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Summary 
 
An advanced sheet material description is developed for finite element simulations of 
the deep drawing process. During deep drawing the initial flat metal sheet is 
plastically deformed into a desired shape. In order to obtain a product without defects 
or failure, the material and process conditions have to be chosen carefully. With a 
finite element simulation the influence of the material and process parameters can be 
studied before the actual process is carried out, hence a prolonged experimental trial 
and error process is reduced.  
 
The yield function is the main point of focus. The yield function determines whether a 
stress state is elastic or plastic and is connected to the yield surface. Commonly the 
material parameters for the yield function are determined from uni-axial tests only. 
Because the results of finite element simulations appear very sensitive to variations 
in the yield function under multi-axial conditions, Vegter (Vegter, 1996) proposed a 
new yield function based on measurements of the shear (σSH), uni-axial (σUN), plane 
strain (σPS) and equi-bi-axial (σBI) yield stress. These measurements define the 
reference points of the yield surface in the principal stress space. The yield surface 
between the reference points is constructed with second order Bezier interpolation 
functions. Each Bezier interpolation function is relevant for a specified part of the 
principal stress space. The Vegter yield surface is illustrated in the figure on the next 
page. 

 
Anisotropy is incorporated by performing the measurements in different directions of 
the sheet, consequently the reference points are defined for each measured 
direction. For intermediate directions the reference points are obtained by a Fourier 
interpolation technique, in this way a yield surface for any arbitrary direction is 
defined. Subsequently the yield function is elaborated as follows: 
 
•The stress state is transformed into principal stresses 
•The direction of the principal stresses in the sheet is determined 
•The reference points of this direction are defined 
•The relevant Bezier interpolation function is determined 
•The yield function is derived from the principal stresses and the relevant Bezier 
  function. 

 
The finite element implementation of the Vegter yield function is checked and 
appears to be correct. 



Vegter yield surface

Hardening of the material during plastic deformation is described by two models. The
first hardening model is the physically based hardening model suggested by v.
Liempt (v. Liempt, 1988) and Vegter (Vegter, 1991). This hardening model is able to
describe the yield stress accurately for a large strain range and takes into account
the influence of the deformation rate. The physically based hardening model
assumes isotropic hardening behaviour, which implicates that each (multi-axial) yield
stress increases with the same factor after plastic deformation. From experiments it
appears that this is only valid in proportional deformation paths, hence a second
hardening model is developed, taking into account the material behaviour during a
cyclic deformation. This anisotropic hardening model is initially based on the theory of
Vreede (Vreede, 1992). Due to the definition of the yield function in principal
stresses, the model is adapted to combine it with the Vegter yield function. A start is
made with extending the hardening description to general non-proportional
deformations, but this extension does not give realistic results yet and needs more
research.

To measure the data for the new material description, a bi-axial test equipment is
developed. The test equipment is able to impose a shear deformation and a plane
strain deformation. The shear deformation can be imposed in 2 directions and the
plane strain deformation can be imposed in tension and compression. In this way a
large variety of stress and deformation states can be investigated. In this dissertation
the bi-axial test equipment is used for the next purposes:

• The determination of the shear and plane strain reference points
• The parameter determination of the anisotropic hardening model
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During experiments a piece of sheet metal is fixed between two pairs of clamps.
Between the clamps and at the free edges of the test piece the stress and
deformation deviates from the intended values. The stress is corrected quantitatively
by a finite element model of a part of the test piece. The deformation can not be
predicted quantitatively with this model, hence a special deformation analysis system
is purchased which directly measures the deformation from the test piece.
Experiments are performed with aluminium (AA 5182) and Aluminium killed steel
(AKS). It appears that the equipment can be used conveniently for the intended
purposes.

The material model is validated on 3 test cases. The first test case is a bending
experiment, carried out in co-operation with the University in Eindhoven. This test
case is a validation of the Vegter yield function at stress states in the plane strain
region. The second test case is the deep drawing of a cylindrical cup, carried out in
co-operation with Corus RD&T. This test case validates the Vegter function mainly on
the earing behaviour, which is known to be sensitive to differences in multi-axial yield
stresses. The third test case is the deep drawing of a trapezium-shaped product. This
test case validates the material model on a critical product, that means a product,
which can just be manufactured without defects or material failure. It appears that in
each test case the Vegter yield function gives better results than the commonly used
Hill’48 yield function, hence the developed description can be considered very useful.

Finally two applications of complex deep draw products are investigated. The first is
the deep drawing of a Volvo pedal box. Corus RD&T has some experience with deep
drawing this product and simulations of this product can be compared with
experiments at Corus. However, it appears that the process conditions can not be
fixed very accurately due to wear of tools, hence the experimental results have to be
interpreted with care. The second application is the deep drawing of an Audi front
panel, which was used as a Benchmark at the Numisheet ’99 conference. The
required calculation time turns out satisfactory for this application, so it can be
concluded that the developed material model can be used conveniently in real deep
draw applications.
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1 Scope of the research

The research in this dissertation is carried out in order to characterise sheet metal for
use in finite element simulations of deep drawing processes. The deep drawing
process is commonly used in the sheet metal forming for the packaging industry and
the automotive industry. Examples in the packaging industry are beverage cans and
pet food containers. In the automotive industry a large variety of deep drawn parts
are made, for instance inner parts, stiffeners and body panels such as fenders, doors
and motor hoods.

During the process of deep drawing, a sheet of metal is deformed into a
desired shape by moving a punch into a die. To prevent the sheet from wrinkling, a
blank holder is required. In figure 1-1 the principle of deep drawing is illustrated for a
cylindrical product.

punch

die

blank holder

deformed

sheet

Figure 1-1 Principle of deep drawing

The shape of the punch and the die define the shape of the resulting product. During
the punch displacement the material is drawn from the blank holder region into the
die. The flow of material is influenced by the shape of the tools, the blank holder
force, use of lubricant, the initial blank shape and the blank material.

If the process conditions and the blank are not chosen carefully, the product
deviates from the intended product. Possible deviations are tears and wrinkles in the
product or complete failure due to necking. Another deviation - important for outer car
panels - is a non-smooth surface due to scratching and orange peel. With knowledge
based on experience, many deviations can be avoided in more-or-less standard
products. In order to produce a complicated part without deviations, use is made of a
trial and error process. Sometimes the pre-designed tools have to be re-designed or
replaced by other tools.
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To reduce costs especially for tooling in the developing stage and to reduce time for
new designs or concepts, use can be made of numerical simulations. With a
numerical model of the deep drawing process, the influence of process parameters,
blank shape and blank material can be studied before the actual process is carried
out. Improvement of the quality of these simulation models will lead to further
optimisation for the use of new materials such as aluminium alloys and high strength
steels and new forming processes like hydroforming and rheoforming. In the scope of
this research a finite element package is used as the numerical tool. The mechanics
of the finite element models have achieved a high level of development (Numiform,
1998), (Numisheet, 1999) and nowadays the physics in these models have to be
improved. An important item is the development of new material models in these
simulation codes. The research in this dissertation focuses on the characterisation of
sheet material by new mechanical tests, the derivation of the necessary equations
and the implementation of these equations in a finite element code. The research is
carried out in co-operation with Corus RD&T and can be considered an extension of
work carried out by Vegter (Vegter, 1991) (Vegter, 1996), Vreede(Vreede, 1992) and
Carleer (Carleer, 1996).

Vegter focussed on the material behaviour of sheet metal whereas Vreede
developed the finite element basis for simulations of 3-dimensional sheet metal
forming processes. Carleer extended the finite element basis with more sophisticated
elements and an improved description of the contact between the tools and the
sheet. Furthermore he made a start with the implementation of the material
description of Vegter.

The research of this dissertation focuses firstly on the finite element
implementation of the proposed material description of Vegter in 1996. Several
material models for sheet metal are available from the literature and implemented in
simulation software. Usually the material parameters for these models are
determined from uni-axial tests only. However, in deep drawing all kinds of stress
states occur. It is observed that the results of simulations are very sensitive to
variations in the yield condition under multi-axial stress states. Therefore it is required
that a material model is applied that is based on measurements under multi-axial
conditions. The Vegter model has this flexibility. Besides the material parameters in
the Vegter model can be chosen in such a way that most of the commonly
anisotropic models are covered. For that reason the choice is made for the
elaboration the Vegter material description. To carry out the required measurements
for the Vegter material model, a multi-axial test equipment is developed. The
improvement and application of this equipment is the second point of focus. Thirdly
the Vegter yield function is extended with with 2 hardening functions. The first
function is a physically based hardening function, which is based on the dissertation
work of Vegter of 1991. The second function is an anisotropic hardening function,
which is based on the theory of Vreede of 1992.

This dissertation starts with an introduction to sheet metal characterisation in chapter
2. Here, the modelling of sheet metal and the experimental devices for the generation
of the data for the models are discussed. This chapter also provides an introduction
to the finite element implementation of material models. Subsequently chapter 3
deals with the implementation of the Vegter yield function and chapter 4 discusses
the implementation of the hardening functions in an implicit finite element code. In
this case the functions are implemented in the code developed at the University of
Twente, but the theory in these chapters can also be used conveniently for other
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codes. Chapter 5 focuses on the new multi-axial test equipment. It gives a
description of the equipment and explains the use of the several components. The
test equipment is firstly used for determining data for the Vegter yield function.
Furthermore a start is made to investigate cyclic and combined loads. In chapter 6
the implemented material description is validated on 3 test cases. The cases are
simulated and carried out experimentally, so a comparison between the simulations
and experiments can be made. Finally chapter 7 shows the application of the new
material model in 2 simulations of complicated products.
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2 Introduction to sheet material characterisation

This chapter is an introduction to sheet material characterisation. The focus will be on
material modelling as well as experimental material testing. The chapter starts with
some commonly used material models in finite element codes and discusses the new
material model of this dissertation. The second section shows common experimental
set-ups and the new set-up developed at the University of Twente (UT). Section 3
discusses the implementation of a material model in a finite element code.

2.1 Sheet material modelling

This section is an introduction to material modelling applied to sheet metal forming. In
general, plastic material models are divided into two parts, one part which describes
the stress states of initial yielding of the material (yield function) and a part which
describes how the yield function develops after plastic deformation (hardening
function). The yield function is represented by the yield surface, which is a graphical
representation of yield stresses in the stress space. The hardening function describes
how the yield surface changes after plastic deformation. The yield function and the
hardening function are discussed separately in sections 2.1.1 and 2.1.2. Section
2.1.3 combines the yield function and the hardening function in a mathematical
formulation.

2.1.1 Yield function

The yield function defines a stress state at which yielding starts. In sheet metal
forming processes, the stress state is considered as plane stress. In the plane of the
sheet the stresses (!xx), (!yy) and ("xy) are considered and the stresses normal to the

sheet are zero. Mindlin sheet element models also take into account shear stresses
("xz) and ("yz). Appendix I shows how these stresses can be taken into consideration.

In the main part of this dissertation the shear stresses ("xz) and ("yz) are omitted. The

plane stress state is illustrated on a square piece of sheet metal in figure 2-1.
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Figure 2-1 Stress state in the sheet
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One of the main functions used in finite element packages is the von Mises function,
which is based on the measurement of the uni-axial yield stress (!un). For a plane

stress situation this function can be given by:

2. 1

The von Mises function is an isotropic yield function. No distinction is made between
material behaviour normal to the sheet and in the plane of the sheet. Furthermore the
yield stress states are independent of the direction in the plane of the sheet. Figure
2-3 illustrates the von Mises yield surface in the principal stress space.

Another function based on the uni-axial test is the Tresca yield function. The shape of
this model is different to the von Mises model. It assumes a discontinuous gradient of
the yield surface in the uni-axial yield stress. It appears that steel can be better
represented by the von Mises function and that aluminium tends more towards the
Tresca yield function. The Tresca yield surface is also illustrated in figure 2-3.

From uni-axial experiments it appeared that isotropic behaviour was not valid for
every material. This is reflected by the measured R-values, which define the ratio
between the strain in the width and thickness directions during a uni-axial tensile test,
see figure 2-2.

Figure 2-2 Definition of the R-value

The R-value differs from 1 in general, which means that the material behaviour in the
thickness direction differs from the behaviour in the plane of the sheet. The R-value
also varies for different directions in the plane of the sheet, which implies planar
anisotropic material behaviour. The Hill ’48 yield function incorporates this material
behaviour (Hill, 1950):

2. 2

in which ! is the stress tensor and (!y) is the average uni-axial yield stress of the

directions 0°, 45° and 90° to the rolling direction in the plane of the sheet:

2. 3
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The tensor P and the factors F, G and H depend on the factors R0, R45 and R90,
which are the R-values in the considered directions (Carleer, 1997). The Hill yield
surface is shown in figure 2-3 for different R-values. In the figure no planar anisotropy
is illustrated.

Figure 2-3 Tresca, von Mises and Hill yield surface in the principal stress space

The Hill ’48 yield function is still based on uni-axial tensile tests. From several
experiments it appeared that this relation is a poor approximation for some types of
material. Therefore other yield functions were developed to take into account data
from various multi-axial tests. An example is given by the Barlat function (Barlat,
1991). This function depends on 8 variables for a general stress situation, which can
be determined from multi-axial experiments. For a plane stress situation the function
depends on 5 variables (a,b,c,h,m):

2. 4

where S1, S2 and S3 are the principal values of a symmetric matrix, which, for a plane
stress situation is given by:
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2. 5

The Barlat surface is represented in figure 2-4 for 2 different values of the parameter
(m). The parameters (a),(b) and (c) have the value 1 in the example, so no planar
anisotropy is illustrated.

Figure 2-4 Barlat and von Mises yield surface in the principal stress space

Vegter (Vegter, 1996) proposed a new yield function which directly incorporates
experimental data from multi-axial tests. The Vegter function is based on data of the
shear test (!SH), the uni-axial test (!UN), the plane strain test (!PS) and the equi-bi-

axial (!BI) test. The measured data can be observed in the principal stress space in

figure 2-5. The points shown are called the reference points of the yield surface.
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Figure 2-5 Multi-axial data in the stress-space

In order to incorporate anisotropy in the new yield function, the data are measured for
different directions to the rolling direction. From experience it appears that 3
directions (0°,45° and 90°) are sufficient when 4 ears arise in deep drawing a

cylindrical product.
By drawing curves through the data for different directions, surfaces for the

three mentioned directions appear. Figure 2-6 illustrates the curves for the directions
0° and 45°.
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Figure 2-6 Curves through the reference points in different directions

To relate a function to the measurements, first a method to construct yield surfaces
through the measured reference points must be developed. Secondly a yield surface
for other angles must be defined. This is derived in detail in chapter 3.
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Recently researchers put a lot of effort into microstructure based yield functions.
These functions are based on the plastic behaviour of single crystals and use a
homogenization scheme for the transition to polycrystals. A single crystal has a
number of slip systems, depending on the type of material. A slip system consists of
a slip plane in a defined direction. When the critical stress has been reached, slip
occurs on the slip plane. Each crystal has an orientation in the sheet. Because sheet
metal is rolled from bulk material, certain orientations develop more than others. The
orientations can be measured with an X-ray diffraction technique and are commonly
represented by pole figures or orientation distribution functions.

A Taylor scheme is commonly used to obtain the macroscopic behaviour of a
polycrystal. In this method the deformation of each single crystal is equal to the
macroscopic deformation and the macroscopic stress is determined by an average of
the microstructural stresses. To comply with the macroscopic deformation, the single
crystals deform by slip on the slip plane and change their orientation by rotation. A lot
of research on the use of a microstructural model was carried out by van Houtte (v.
Houtte, 1997).

Due to large computation times, the microstructure based functions cannot be
applied directly in finite element simulations of full-scale (macroscopic) processes. An
option is to calculate the yield locus on the basis of the initial orientation distribution
and use this yield locus in a finite element code. For this, the Vegter yield function
can be used. The reference points can be obtained by simulating the considered
tests with the microstructural function.

This dissertation focuses on the Vegter yield function. This function is based on
experimentally obtained multi-axial data and has the advantage of an acceptable
computation time in a finite element code. Figure 2-7 illustrates the Vegter yield
surface in the principal stress space together with the Hill surface. The figure
illustrates that, although both surfaces have the same average uni-axial yield stress
and R-value, the shape can differ to a large extent. Planar anisotropy is omitted in
the example.
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Figure 2-7 Hill and Vegter yield surface in the principal stress space

2.1.2 Hardening function

The hardening function defines the development of the yield condition after plastic
deformation. In proportional deformations the hardening is commonly described by
the Nadai-Ludwik function:

2. 6

This function defines the yield stress (!y) as a function of the equivalent plastic strain

(#p). The equivalent plastic strain is related to the plastic strain tensor by the definition

of the equivalent plastic strain rate:
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or

2. 8

where

is the plastic strain rate tensor

is the stress tensor

In proportional deformations, the rate form of (2. 8) can be replaced by:

2. 9

which is, for a plane stress situation:

2. 10

The Nadai-Ludwik function is a phenomenological function, which does not take into
account the effect of the strain rate. It does not describe the yield stress accurately
for a large strain range (for instance for values till 1.0), and therefore van Liempt (v
Liempt, 1988) and Vegter (Vegter, 1991) derived a hardening function based on the
multiplication of dislocations with plastic deformation. This function is partly based on
the theory of Bergström (Bergström, 1969). The function can describe the real
hardening behaviour more accurately and takes the strain rate influence into account.
In this dissertation the function is called the physically based hardening function:

2. 11

The yield stress (!y) is defined as a function of the equivalent strain and the

equivalent strain rate. The function is discussed extensively in the first part of chapter
4 of this dissertation, where it is used in combination with the Vegter yield function.

In proportional deformations the hardening can be considered isotropic. In that case
the yield surface does not translate in the stress space. Only the size of the yield
surface changes after plastic deformation, see figure 2-8. The yield surface before
(!y=!0) and after plastic deformation is illustrated by the dotted line and the solid line

respectively. When the isotropic hardening function is used in a tension-compression
deformation, the material starts to yield at minus the current yield stress after the load
reversal, see figure 2-9.
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Figure 2-8 Development of the yield surface at isotropic hardening

Figure 2-9 Yield behaviour after a load reversal for isotropic hardening
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Another model suggests that the yield surface only translates in the stress space
while its size remains constant. This type of hardening is called kinematic hardening,
see figure 2-10. After a load reversal the material starts to yield at a stress change of
twice the initial yield stress (!0), see figure 2-11.

Figure 2-10 Development of the yield surface at kinematic hardening

Figure 2-11 Yield behaviour after a load reversal for kinematic hardening

The real stress - strain behaviour lies somewhere in between the kinematic
hardening and the isotropic hardening, illustrated by figure 2-12. It appears that after
a load reversal the material starts to yield after about twice the initial yield stress. At
this stress state a relatively large hardening rate is observed. After further
deformation, the hardening rate tends towards the same level as before the load
reversal, illustrated by the parallel dotted lines in figure 2-12. The yield point directly
after a load reversal is predicted well by the kinematic hardening function and the
behaviour after further plastic behaviour is predicted well by the isotropic hardening
function.
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Figure 2-12 Experimental stress strain relation at a load reversal

To describe the experimental stress-strain behaviour a combination of isotropic and
kinematic hardening can be used (Vreede, 1992). The model developed here makes
use of 2 surfaces. One surface defines the yield condition directly after a load change
and the other surface defines the hardening after further deformation. This model will
be described extensively in the second part of chapter 4, where it is used in
combination with the Vegter yield function.

2.1.3 Mathematical formulation

The mathematical formulation of a yield function after plastic deformation is given by:

2. 12

where

is the yield function
is the stress tensor
is the hardening tensor

This formulation captures both the yield condition and the hardening.
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Expression (2. 12) defines the stress and the strain after plastic deformation. The
plastic strain rate is defined, using the normality principle of Drucker, by:

2. 13

where

is the plastic strain rate tensor

is the plastic multiplier rate, which represents the plastic deformation rate

is the normal to the yield locus

The stress in a co-rotational reference frame is defined, using Hooke’s law as follows:

2. 14

where

is the stress rate tensor

is the elasticity tensor
is the elastic strain rate tensor
is the strain rate tensor
is the plastic strain rate tensor

Substitution of (2. 13) into (2. 14) gives:

2. 15

The value of the yield function stays zero during plastic deformation:

2. 16

The second term is proportional to the plastic multiplier rate, so this term is written as:

2. 17

and consequently

2. 18

Note that (f) represents the hardening rate when plastic deformation occurs. This
term can represent any kind of hardening.
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Substitution of (2. 15) into (2. 18) gives:

2. 19

Hence the plastic multiplier can be written as:

2. 20

Now the stress rate - strain rate relation is obtained by

2. 21

where

2. 22

2.2 Experiments

In order to obtain data for the Vegter model, experimental data under multi-axial
stress conditions are used. In this section the tests and set-ups are described. The
tests are discussed in detail in section 2.2.1, in section 2.2.2 the experimental set-ups
are shown.
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2.2.1 Required tests

The following tests are required for the Vegter yield function (see also figure 2-5):

Shear test

This test defines the location and the gradient of the shear point of the Vegter yield
surface. The data can be obtained by applying opposite loads in 2 perpendicular
directions, see figure 2-13. This experiment determines the pure shear yield stress.
The white arrow in the test piece denotes the rolling direction, which can be chosen
as desired. The black arrows indicate the stress state.

Figure 2-13 Pure shear test

It is difficult to keep both loads exactly the same during the test. Therefore the shear
experiment is carried out by clamping a piece of sheet metal on two sides and
prescribing one clamp in the transverse direction (figure 2-14). This test is called the
simple shear test.

Figure 2-14 Simple shear test

!

clamp

clamp
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Uni-axial test

The conventional uni-axial test defines the location and the gradient of the uni-axial
reference point. The gradient is related to the R-value:

2. 23

Plane strain test

The plane strain test defines the location of the plane strain point in the first principal
stress direction. A tensile test is performed on a piece of sheet metal with a large
width compared to its length. The second principal stress is not determined because
the stress in transverse direction cannot be measured. The gradient in the plane
strain point is infinite due to a zero strain in the transverse direction.

Equi-bi-axial test

The equi-bi-axial test defines the position and the gradient of the equi-bi-axial point.
The data can be obtained by applying the same load in 2 mutually perpendicular
directions, see the left of figure 2-15.

Figure 2-15 Equi-bi-axial test

It is difficult to keep both stresses exactly the same. The material is assumed to
behave independently relative to a hydrostatic pressure (middle of figure 2-15).
Therefore the experiment can also be performed by compressing the sheet in the
normal direction, see the right of figure 2-15. The gradient is determined by the strain
according to the normality principle of Drucker.

! !
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The required data for the Vegter yield function are listed in table 2-1. Figure 2-5
illustrates the data in the principal stress space.

Measurement !1 !2 gradient

Equi-bi-axial test "BI = "BI -d#1/d#2

Plane strain test "PS not measured $

Uni-axial test "UN = 0 -d#1/d#2

Shear test "SH = -"SH -d#1/d#2

Table 2-1 Data for the Vegter yield function

2.2.2 Experimental set-ups

Several experimental set-ups have been developed for specific purposes. For
instance, Miyauchi (Miyauchi, 1987) developed a shear test to investigate material
behaviour in a shear deformation. Recently some set-ups have been developed
which can impose more than one type of deformation. These set-ups have the
advantage that combinations of deformations can be imposed on the same test
piece. Some can impose different deformations in succession without detaching the
test piece from the necessary equipment. This section focuses on a few recent
developments.

A well known experimental technique is the Nakazima test. This test is often used to
determine the forming limit curves of materials. The test deforms a piece of sheet
metal with a hemispherical punch, a cylindrical die and a blank holder with draw
beads. The blank holder and draw beads are applied to restrict the material from
flowing into a cylindrical die. Grease and a polymer disk are used to reduce the
friction between the punch and the test piece. The experimental set-up is shown in
figure 2-16. By varying the width (W) of the test pieces, the stresses range from uni-
axial to equi-bi-axial. A narrow test piece will show a uni-axial stress whereas a
‘square’ shape of the test piece will show stresses in the equi-bi-axial region. This
set-up cannot impose different deformations to the same test piece, nor can a
successive pattern of deformations be applied. Moreover a complete control of the
strain path is not guaranteed.
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Figure 2-16 Nakazima experiment principle (Knockaert, 2001)

Another multi-axial test set-up was developed at Inpro (Inpro, 1989). Inpro uses a
cross test set-up, which deforms a square piece of sheet metal in two perpendicular
directions. The two directions can be controlled separately. The forces applied on the
test piece are transmitted through clamping arms. Multiple arms are applied to
ensure that a tensile force in one direction does not effect the forces in the
perpendicular direction. This test has been used by several researchers, see for
instance (Hoverlin, 1998). The test set-up is illustrated in figure 2-17.

Figure 2-17 Cross test principle (Hoverlin, 1998)
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By altering the ratio of the forces in the two directions (F1 and F2), the stresses range
from uni-axial to equi-bi-axial. A tensile force in one direction will show a uni-axial
stress whereas two equal tensile forces will impose an equi-bi-axial stress. This set-
up can impose different deformations to the same test piece. A successive pattern of
deformations can also be applied. The set-up does not permit a compression load in
either direction.

At the university of Twente a bi-axial test equipment has been designed which is
capable of combining a plane strain deformation together with a shear deformation
on a piece of sheet metal. The shear deformation can be imposed in 2 directions and
the plane strain deformation can be imposed in tension and compression. The
principle of the equipment is illustrated in figure 2-18.

sheet metal

clamp

clamp

clamp

clamp

45

3

3

3

Figure 2-18 Bi-axial equipment principle

A piece of sheet metal is clamped between two pairs of clamps. The first pair can be
moved in the tensile direction, which imposes a plane strain stress. The second pair
can be moved in a transverse direction, which imposes a shear stress. The
equipment allows for a cyclic pattern of the same deformations as well as a
successive pattern of different deformations. Currently the equipment can be
considered a prototype and is being improved. The bi-axial test equipment is
discussed in chapter 5 of this dissertation.

For the sake of completeness it is mentioned that also the Snecma division in France
uses a similar principle to test the material behaviour of elastomers (Paulus, 1999).
The principle is illustrated in figure 2-19.
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Figure 2-19 Snecma principle

2.3 Finite elements

Within the framework of the current project, the Vegter yield function and the
hardening models described earlier are implemented in a finite element code. In this
section the finite element implementation is introduced.

The Finite Element Method is used for calculating data of complicated products,
which cannot be obtained analytically. The finite element method divides the total
product with a complicated shape into discrete parts, called elements, with a simple
shape. By connecting the elements, the behaviour of the complete product is
obtained. Because the shape of the elements can never describe the real shape of
the product, the calculated data of the product are always an approximation.

In this dissertation the finite element method is used for simulations of sheet
metal forming processes. As an example a sheet metal product divided in triangular
elements is shown in figure 2-20. The figure zooms in at one element whose position
is defined by the 3 corner nodes. The complete forming process is divided into steps,
during which a part of the total deformation is imposed. The data calculated within
each step are called the incremental data.
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Internal element data (stresses, strains) are stored in integration points. Element and
nodal properties are determined by numerical integration, using the integration point
data. The integration points are defined at certain positions in the element. In this
dissertation 3 integration points in the plane of the sheet and 2 to 7 through the
thickness are used, see figure 2-20:

Figure 2-20 Sheet metal product divided into triangular elements with 3
integration points in the plane of the sheet and 7 through the thickness

integration point

corner node

sheet thickness
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An extensive overview of the finite element method applied to sheet metal forming is
given by (Meinders, 1999). A short overview is given here, starting with the weighted
force - equilibrium of a plastically deformed product:

2. 24

where

is the nodal displacement increment vector
is the nodal internal force vector
is the nodal external force vector

Equation (2. 24) is a non-linear equation. A Newton-Raphson scheme is used to
solve the equation, see also figure 2-24:

2. 25

with

The matrix [K{%u}] is called the stiffness matrix. The Newton-Raphson process is

described in the following steps:

1. The stiffness matrix is constructed with a displacement increment vector {%u0}

equal to zero:

2. 26

2. With this stiffness matrix the displacement increment {%u1} is calculated by (2.

25). Based on this displacement increment, the internal force vector {Fint{%u1}},

abbreviated as {Fint
1} is calculated:

2. 27

where

is the vector with tensor functions which relate the strain increment to the
nodal displacements

3. A new stiffness matrix is constructed :

2. 28

4. With the new stiffness matrix solutions for {%Fint
2} and {%u2} are obtained by (2.

25). The procedure is repeated until the internal force increment vector is close
enough to the external force increment.
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This iterative procedure is called the main iteration process in the finite element
method. For the material model the iteration process has two implications. The first
implication is the construction of the stiffness matrix, indicated by the tangent on the
force-displacement curve in figure 2-24. The second implication is the stress
determination in order to obtain the internal force vector, indicated by the vertical
dotted lines in figure 2-24. The following sections discuss these processes in more
detail.

Figure 2-24 Numerical finite element solution process

2.3.1 Stiffness matrix determination

The global stiffness matrix is composed of the local element stiffness matrices. The
element continuum stiffness matrix is defined by:

2. 29

The tensor (Y) incorporates the plastic material behaviour:

2. 30

where

is the elasticity tensor

is the derivative of the yield function

is the hardening parameter

[ ] ( ) dVBYEBK

V

T
][::][ != "

!
!
!
!

"

#

$
$
$
$

%

&

'
(

(

(

(
(

(

(

(

=

fE

EE

Y

)

*

)

*
)

*

)

*

::

::

E

!

"

#

#

f

{%u}

{Fext}

[K{%u1}]

[K({%u2}]

[K{%u0}]

{Fint
1}

{Fint
2}

{Fint
3}

stiffness matrix
determination

stress update
procedure



Introduction to sheet metal characterisation

2929

Expression (2. 30) indicates that the derivative of the yield function and the hardening
parameter must be determined in order to define the stiffness matrix. It is referred to
in the implementation of the new material model in chapters 3 and 4.

2.3.2 Stress update procedure

The stress update starts by treating the total strain increment as elastic and
calculating the corresponding stress:

2. 31

where (!t) is called the trial stress tensor and (!) is the stress at the beginning of the

procedure. When the stress is inside the yield surface (&<0), the deformation is

elastic and the procedure stops. When the stress is outside the yield surface (&>0),

plastic deformation has occurred. The incremental form of (2. 15) is used to project
the trial stress (!t) onto the new stress (!n) on the yield surface:

2. 32

This stress projection is handled in detail in chapter 4 of this dissertation. The
parameter (%') is determined by the fact that the value of the yield function is zero

after projection.

2. 33

This equation is non-linear, because the yield function (&) depends on the stress (!n)

and the hardening tensor ((). The hardening tensor (() is a function of the derivative

of the yield function to this tensor ()&/)(), the hardening parameter (f), the plastic

multiplier (') and the plastic multiplier rate, see (2. 17). The plastic multiplier rate is

assumed to be directly related to the plastic multiplier increment (%'):

2. 34

where

' is the plastic multiplier

%' is the plastic multiplier increment
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A numerical procedure solves equation (2. 33):

1. The hardening tensor ( is calculated putting %'
0 equal to 0:

2. 35

2. Next a new %'
1 is calculated, satisfying:

2. 36

3. With this solution the hardening tensor ( is calculated with the new %'
1:

2. 37

4. Subsequently a new %'
2 is calculated and so on. The procedure is repeated until

convergence has been reached.

In the finite element code used here the hardening parameter (f) is not updated
during the increment, to keep the procedure stable. The procedure is illustrated by
scheme 3-1, which indicates that the stress must be projected to the yield surface
and that the hardening tensor (() must be determined. This scheme is referred to in

the implementation of the new material model in chapters 3 and 4.
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Initialisation of i, %'i, %'i-1

While do

Determine %'
i+1 by

with

i=i+1

End while

Scheme 2-1 Stress update procedure
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3 Elaboration of the Vegter yield function 
 

3.1 General outline 
 
 
In 1996 Vegter (Vegter, 1996) proposed an advanced yield function which directly 
uses experimental data at bi-axial stress states. The Vegter yield function is based on 
data of the shear test (σSH), the uni-axial test (σSH), the plane strain test (σPS) and the 
equi-bi-axial (σBI) test. These data define the reference points of the Vegter yield 
surface, see figure 3-1. 

Figure 3-1 Vegter yield surface 
 
Each reference point defines a location and a gradient of the yield surface in the 
principal stress space. The reference points are obtained by well known current 
experimental techniques. If additional experimental data can be obtained by new 
techniques in the future, the Vegter yield function can easily be adapted to 
incorporate more reference points into the description. 
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For isotropic material a complete yield surface is determined by 12 reference points. 
This number can be reduced for the following reasons: 
 
• The principal stresses are defined in such a way that σ1 > σ2. Therefore the 

reference points above the line σ1 = σ2 are not required, which leads to a reduction 
of the number of points to 7. 

• Initially it is assumed that the material yields at the same absolute stress under a 
compression load and under a tension load. Therefore the reference points under 
the line σ1 = -σ2 are related to the reference points above this line by symmetry 
conditions (section 3.2.3). This reduces the number of points to 4. 

 
This chapter provides the implementation of the Vegter yield function in the stiffness 
matrix and the stress update algorithm in a finite element code. The basis is the 
mathematical description of the yield locus, which is elaborated in section 3.2. The 
actual implementation is described in sections 3.3 and 3.4.  
 

3.2 Yield function definition  
 
In this section the yield function of the Vegter yield locus is derived. Section 3.2.1 
starts with the interpolation technique of the yield locus between the reference points. 
Section 3.2.2 discusses the extension to anisotropic behaviour. Together with 
symmetry conditions in section 3.2.3, the yield function is elaborated in 3.2.4. 
 

3.2.1 Yield locus interpolation 
 
The yield locus is constructed by a quadratic Bezier interpolation function. This 
interpolation function uses 2 reference points and a hinge point, see figure 3-2. The 
hinge point is determined by the intersection of the gradient of the yield locus in the 
reference points. 
  

Figure 3-2 Bezier interpolation curve 
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The mathematical description of the Bezier interpolation is given by: 
 

3. 1 
 

where: 
 
is the first reference point 
 
 
is the hinge point 
 
 
is the second reference point 
 

 
µ    is a parameter which determines the location on the curve (0≤ µ ≤1). 
 
A yield surface under the line (σ1=σ2) is described by 6 Bezier functions, see      
figure 3-6. On account of the use of Bezier interpolation functions, the yield surface is 
smooth and has a continuous gradient in the reference points. The Bezier functions 
also permit the definition of a smooth yield function. For an overview of 2D 
interpolation techniques the reader is referred to (Salmon, 1987), (Dewey, 1988).  
 

3.2.2 Anisotropy 
 
The yield locus in figure 3-1 shows the reference points of experiments for which the 
first principal stress coincides with the rolling direction in the sheet metal. The 
reference points can also be determined for other angles to the rolling direction 
(planar angle). When it appears that the reference points do not vary significantly with 
the planar angle, the material behaves planar isotropically. In this case the yield 
surface is independent of the planar angle. When the reference points vary with the 
angle, the material behaves anisotropically and the yield surface depends on the 
angle.  
 
Anisotropic material behaviour is incorporated in the yield surface interpolation by the 
extension of (3. 1) to (3. 2): 

 
3. 2 

 
where:  

 
are the positions of reference or hinge points for the planar angle θ    
(i=0,1 or 2) 
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The reference points are determined for a limited number of planar angles. The 
points for intermediate angles are interpolated between the measured points, 
illustrated for a quarter of the yield surface in figure 3-3. 

Figure 3-3 Interpolation of measured data 
 
A Fourier series is used to interpolate the reference points. It is assumed that the 
planar angles 0° and 90° are symmetry angles, which leads to the following series: 
 

 
3. 3 

 
 
 
 

where: 
 

 
 are the positions of reference points for the planar angle θ (i=0 or 2) 
 

      are the gradients dependent on the planar angle θ 
 
are vectors dependent on measured positions of reference points  
 
are factors dependent on measured gradients of reference points  
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Note that the positions of the hinge points for an angle (θ) are determined by first 
interpolating the positions of reference points and the gradients. Subsequently the 
intersection of the interpolated gradients in the reference points define the 
interpolated hinge point (figure 3-2). 
 
Generally the reference points are determined for the planar angles 0°, 45° and 90°. 
Then the Fourier series reduces to a series of three terms: 

 
 

 

3. 4 
 
 
 
 
 
 
 
 

 
 

3.2.3 Symmetry conditions 
 
With symmetry conditions the reference points under the line σ1 = -σ2 (denoted by the 
second part of the yield surface) are determined. Compared to the points above this 
line (first part of the yield surface), these points can be defined by the same 
measurements with the rolling direction rotated through 90°. This is illustrated by 
figure 3-4.  
 
A stress state on the first part of the yield surface is represented at the bottom of 
figure 3-4. When the transition is made to the second part, the principal stresses (σ1) 
and (σ2) are interchanged by (-σ2) and (-σ1) respectively. The second part can be 
represented by the 3 situations of the upper part of 3-4. The left and the middle 
situation of the upper part assume the same yield behaviour in tension and 
compression, which is valid for isotropic material behaviour. The middle and right 
situation represent the same situations, only rotated rigidly through 90°. When the 
latter situation is compared to the situation in the first part of the yield surface, the 
rolling direction is rotated through 90°. 
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Figure 3-4 Rotation of rolling direction (RD) through 90° for the second part 

 
Symmetry conditions are also used to determine the reference point data of the first 
part which are not obtained by measurements (see also table 2-1):  
 
•  The height of the plane strain point is assumed to be at a fixed distance 

between the hinge points on both sides. This distance is given by the factor 
(αps), see point (σPS) in figure 3-5:   

 
3. 5 

 
•  The gradient of the surface at the shear point is assumed to be parallel to the 

line through the uni-axial points, see the slope through point (σSH) in figure 3-5. 
The reason that the gradient is not related to the experimental strain is 
explained in section 5.4.1. 
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The symmetry conditions are illustrated in figure 3-5. For convenience the angle for 
the first part of the yield surface is 0°, so the measurements for this part are 
performed in the rolling direction. The second part can be obtained by the same 
measurements for 90° to the rolling direction. The rolling directions are indicated by 
the white arrows in the figure. 

Figure 3-5 Symmetry conditions in the yield surface 
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3.2.4 Yield function elaboration 
 
The yield function definition with isotropic hardening is taken as a starting point: 

 
3. 6 

which for a plane stress situation is: 
 

3. 7 
Here (σy) is the average uni-axial yield stress and (σxx), (σyy), (τxy) are the stress 
components in the plane of the sheet.  The average uni-axial yield stress is referred 
to as the yield stress in the rest of this dissertation. Since the Vegter yield function is 
based on reference points in the principal stress space, the yield function is rewritten 
as: 

 
3. 8 

The principal stresses and the planar angle θ are defined by the rules of tensor 
transformation (Gere, 1991): 

 
 
 
 

 

3. 9 
 
 
 
 
 

 
When the stress is on the yield surface the yield function is equal to zero. When a 
fictive stress is outside or inside the yield surface, the yield function has to be positive 
or negative respectively. Therefore an equivalent stress (σeq) is defined: 
 

3. 10 
 
The equivalent stress defines a fictive yield surface through the fictive stress state, 
see figure 3-6. The fictive yield surface has the same shape as the yield surface but 
differs in size. Here the equivalent stress (σeq) is defined as follows.   
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With the equivalent stress (σeq), the fictive yield surface can be described similarly to 
equation (3. 2): 
 

3. 11 
 

 
where: 
 
σy   is the yield stress, which represents the size of the yield surface 
 
σeq  is the equivalent stress, which represents the size of the fictive yield surface  
 
The term between brackets in (3. 11) is the Bezier interpolation function. Half of the  
yield locus consists of 6 Bezier interpolation functions. Hence the relevant Bezier 
function is selected by the ratio of the principal stresses (σ1/σ2). This is illustrated by 
Figure 3-6. It shows the 6 Bezier interpolation functions BI(1) till BI(6). The fictive 
stress is represented by the large black dot. This fictive stress lies between the line 
from the origin trough the uni-axial point and the line from the origin through the shear 
point. The first line represents a ratio of 0 and the second a ratio of –1. In this case 
the Bezier curve between the shear and the uni-axial point is relevant. The remaining 
dotted lines represent other ratios. 
 
Equation (3. 11) is simplified by defining the normalised first (f1) and second (f2) 
components of the Bezier interpolation function: 
 

 
3. 12 

 
where: 
 

 

3. 13 
 
 
 

In this way 2 equations for σeq are obtained: 
 
 
 

3. 14 
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Equating the first and second of (3. 14) gives an expression for (µ), which has two 
solutions. One of the solutions is a value between 0 and 1. This value is substituted 
into (3. 14) to obtain a solution for (σeq). Consequently the value of the yield function 
is determined by substitution of (σeq) in (3. 10).  
 
In finite element applications the yield function is determined as follows: 
 

1. The stress state σxx,σyy,τxy is transformed into a principal stress state        
σ1 and σ2 (equation 3. 9) 

2. The planar angle θ is determined (equation 3. 9) 
3. The measured reference points are interpolated in order to obtain the 

reference points for the angle θ (equation 3. 4) 
4. From the 7 reference points, the 2 relevant reference points and the related 

Bezier function are chosen on the basis of the ratio of the principal stresses 
(figure 3-6). 

5. The yield function is determined according to (3. 10), (3. 13) and (3. 14)  
 
 

 

Figure 3-6 Half of a yield surface and fictive yield surface defined by 6 Bezier 
interpolation functions 
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3.3 Stiffness matrix implementation 
 
To implement the Vegter yield function in the stiffness matrix the derivative of the 
yield function must be determined (section 2.3.1). 
 
The derivative of the yield function to the stress tensor is given by: 
 

 
3. 15 

 
This expression is written in vector format for a plane stress situation. The normal 
must be related to Bezier functions in the principal stress space. Therefore the 
normal is expressed in the principal stresses and the planar angle: 
  

  
 
 

3. 16 
 
 
 

 
The reference points for the yield function are found by interpolation using a Fourier 
series, consisting of terms with (cos2θ) and (cos4θ) see equation (3. 4). Therefore it 
is convenient to rewrite the last term of expression (3. 16) as a function of (cos2θ): 
 

 
 
 

3. 17 
 
 
 
 
 

                a1      b1        a2      b2            c             d 
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The expression for the normal (3. 17) is divided into 6 parts (a1, a2, b1, b2, c and d): 
a1, a2: The derivatives of the yield function with respect to the principal 

stresses. Figure 3-7 illustrates these derivatives in the principal stress 
space 

b1, b2: The derivatives of the principal stresses with respect to general stress 
components 

c: The derivative of the yield function with respect to the cosine of twice 
the angle to the rolling direction (appendix C) 

d:  The derivative of the cosine of twice the planar angle with respect to the 
stress 

 

Figure 3-7 Derivative components in the principal stress space 
 
The full elaboration of the normal to the yield surface is given in appendix A. In finite 
element applications the normal to the yield surface is determined as follows: 
 

1. The stress state σxx,σyy,τxy is transformed into a principal stress state σ1 
and σ2 (equation 3. 9) 

2. The planar angle θ is determined (equation 3. 9) 
3. The measured reference points are interpolated in order to obtain the 

reference points for the angle θ (equation 3. 4) 
4. From the 7 reference points the 2 relevant reference points and the related 

Bezier function are chosen on the basis of the ratio of the principal stresses 
(figure 3-6) 

5. The derivatives of the yield function with respect to the principal stresses 
are defined (a1,a2)  

6. The derivatives of the principal stresses with respect to general stress 
components are determined (b1, b2) 

7. The derivative of the cosine of twice the planar angle with respect to the 
stress components is determined (d) 

8. The derivative of the yield function with respect to the cosine of twice the 
planar angle is determined (c) 

9. The normal is constructed by expression (3. 17) 
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3.4 Stress update algorithm implementation 
 
To implement the Vegter yield function in the stress update algorithm, the stress must 
be projected to the yield locus (section 2.3.2). When isotropic hardening is assumed, 
the tensor (β) can be replaced by the yield stress (σy).  
 
A variety of stress projection procedures is available, see for instance (Borst, 1989.). 
The procedures differ in the definition of the derivative of the yield function, which 
effects the stability of the procedure. The unconditionally stable Euler Backward 
procedure is applied, which uses the derivative of the projected stress: 

 
3. 18 

with  
 

3. 19 
Here σt is the trial stress and σn is the projected stress. Note the addition of the 
subscript ‘n’ in the normal to the yield surface, compared to 2.32. Expression (3. 18) 
is rewritten in a vector-matrix format for a plane stress situation: 

 
 
 

3. 20 
 
 
 
 

 
which, in principal stresses (appendix B), is as follows: 
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3. 21 
 
 
 
 
 
 
 

The matrix A(µ,Δλ) depends on µ and Δλ. The parameters f1(µ,θ) and f2(µ,θ) are the 
normalised components of the Bezier interpolation function,  defined  by (3. 14).  
 
Expression (3. 19) can also be rewritten in vector format for a plane stress situation 
with the help of equations (3. 10) and (3. 14): 

 
 

3. 22 
 
 

The principal stresses and the planar angle of the projected situation are determined 
by the rules of tensor transformation (equations 3. 9).  
 
There are in all eight unknown parameters in the stress projection ((σxx)n, (σyy)n, (τxy)n, 
(σ1)n,(σ2)n, µ, Δλ, θ), and there are eight equations available (3 from 3. 21, 2 from 3. 
22 and 3 from 3. 9). Appendix B shows that an expression for Δλ and µ can be 
derived, from which the other unknowns can be determined. 

However, in the derivation 2 problems occur. In the first place it appears that 
the expressions become very complicated. The expression of the normal (appendix 
A) is very extensive and therefore hard to implement in a stress projection procedure. 
In order to obtain more simple expressions, the use of alternative reference points 
with constant slopes has been researched. In this case only positions have to be 
interpolated and not the gradients. This option is elaborated in appendix E. It provides 
a simplification of the normal, but the relation with measured data is less 
straightforward. 
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A second problem is that the valid Bezier curve cannot be determined in 
advance by the ratio of the principal stresses. This is because the planar angle is not 
known before the projection procedure.  Figure 3-8 illustrates this for a trial stress 
state in the vicinity of the plane strain reference point. If the planar angle after 
projection is equal to 45°, the relevant Bezier curve is the curve between the plane 
strain point and the equi-bi-axial point. If the angle after projection is equal to 90°, the 
relevant Bezier curve is the curve between the uni-axial point and the plane strain 
point. Hence it is quite difficult to predict a Bezier curve for an arbitrary planar angle.   
 

 
 

Figure 3-8 Dependence of relevant Bezier curve on the projected planar angle 
 

A numerical procedure is developed, based upon the projection with a constant 
planar angle. This projection is placed into an iteration process in which the angle is 
updated. In this way the relevant Bezier function can be determined in a 
straightforward way by the ratio of the principal stresses.  Appendix B provides a 
complete mathematical elaboration. The procedure is explained shortly as follows. 
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1. The procedure first neglects the third term on the right hand of (3. 21), 

which means that the planar angle stays equal to the planar angle of the 
trial stress. This is known as the Euler-backward procedure with a constant 
planar angle (appendix B) 

2. Based on the solution with the constant planar angle a first guess of the 
neglected term is made. By rewriting expression (3. 21), this term can be 
seen as a deviation from the trial stress: 

  
       

 
 
 
 
3. 23 

 
 
 
 

 
3. Consequently a new projection procedure is started, with the adapted trial 

stress as a starting point 
4. The procedure is repeated until convergence has been reached. 

Convergence is checked upon the back scaled stress situation adapted 
with the last term of (3. 21) 

 
  
Scheme 3-1 illustrates the procedure.  
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Stress Projection with constant planar angle (appendix B) 

 
 

i=0 
 
 
 
(σ1)n

0    
(σ2)n

0 
θ0 
µ0 
Δλ0 

 
While                                do 

  
i=i+1 

  
 
                                                                                                                 
(adaptation of  trial stress) 
 
 
 
 

Stress Projection with constant planar angle (appendix B) 
 

    
(σ1)n

i    
(σ2)n

 i 
θ i

  

µ i 
Δλ i 

 
 
 
 

(adaptation of projected stress) 
 
 
 

 
(σ1)n    
(σ2)n 
θ 
µ 
Δλ 

 
End While 

 
Scheme 3-1 Numerical stress projection procedure 
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3.5 Validation of numerical implementation 
 
The definition of the yield function based on the reference points makes it possible to 
approximate the Hill ’48 function, which is widely used in finite element codes. By a 
comparison of the fitted Vegter function and the Hill ‘48 function, the numerical 
implementation of the Vegter function is validated. The yield function is first used in a 
simple ‘four-element’ tensile test. Secondly the deep drawing of a cylindrical cup is 
treated.  
 
The material data are given in tables 3-2 to 3-4. The first table shows the R-values of 
the Hill yield function. The second table provides the first components of the Vegter 
reference points normalised with the average uni-axial yield stress (σy). The 
parameter (αps) defines the second component of the plane strain point (figure 3-5). 
The last parameter is the gradient in the equi-bi-axial point for different directions. 
The hardening relation is according to Nadai-Ludwik. The third table shows the 
parameters for this hardening relation. 
 
Hill: 0° 45° 90° 
R 2.04 1.27 2.19 

Table 3-2 Hill function data 
 
Vegter : 0° 45° 90° 
σSH/σy 0.503 0.611 0.503 
σUN/σy 0.916 1.079 0.927 
σPS/σy 1.247 1.301 1.262 
σBI/σy 1.149 1.149 1.149 
R 2.07 1.27 2.19 
αps 0.348 0.449 0.348 
gradient  
equi-bi-axial 

-1.01 -1.00 -0.99 

Table 3-3 Vegter function data 
 

Nadai-Ludwik: 
σy (N/mm2) C n 
184.8  539 0.202 

Table 3-4 Nadai-Ludwik hardening data 
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3.5.1 Four-element test 
 
The test is carried out for a planar angle other than 0° or 90° on a 1 mm square piece 
of sheet metal. The angles of 0° and 90° are symmetry directions, hence a tensile 
test would not show any shear deformation. In particular this shear effect at planar 
anisotropic behaviour is sensitive to the material description. Therefore the test is 
carried out for a planar angle of 22.5°. The test is illustrated by figure 3-9. The 
deformed configuration is represented by the dotted lines. 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 3-9 Four-element validation case 
 
The displacements of nodes 2 and 5 are prescribed as 0.001 mm per step. In total 
100 steps are used which provides a total displacement of 0.1 mm. The unbalance 
criterion is set on 0.1 percent. The Vegter and the Hill yield functions both show the 
same deformation pattern.  

Results of the stresses, strains and displacement Y5 (figure 3-9) after 
deformation are given in table 3-5. In the table the x-direction is considered the rolling 
direction (RD).  

 
 Hill yield function Vegter yield function 
σy (Mpa) 338 338 
σxx (Mpa) 287 285 
σyy (Mpa) 54 53 
τxy (Mpa) 124 123 
εeq 0.094 0.094 
εxx  0.082 0.082 
εyy  -0.046 -0.046 
γxy  0.088 0.087 
Y5 (mm) -0.0876 -0.0878 

Table 3-5 Stress and strain data after tensile deformation 

1 2

3

4 5

22.5°

RD

Y5 
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Only small differences occur in the results, which is attributed to the small difference 
between the fitted Vegter and the Hill function. This is inherent to the fact that the 
Vegter yield function is constructed with Bezier interpolation functions and Hill with a 
quadratic function. 

3.5.2 Deep drawing of a cylindrical cup 
 
The set-up of the deep drawing of a cylindrical cup is shown in figure 3-10. Due to 
planar anisotropy the shape of the flange will not remain circular during the forming 
process. The visual check of the flange deformation of a partly drawn cup is taken as 
a second validation of the numerical implementation.  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-10 Set-up for deep drawing of a cylindrical cup 
 
Only a quarter of the blank is simulated because of symmetry. The blank holder force 
decreases linearly with the punch displacement from 6 to 5 kN. The process 
conditions are given by table 3-6: 
 
Process parameters  
  
blank holder force [kN] 65 
friction coefficient 0.16 
punch displacement [mm] 31 
Table 3-6 Process parameters 
 
  
 

100

50 8

52 10

0.8

 x

y

1/4 blank
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The footprint of the simulations of the deep drawn cup are illustrated in figure 3-11. 

 
Figure 3-11 Deformed meshes of fitted Vegter criterion and the Hill criterion 

 
The flange deformation shows very small differences. It indicates a proper numerical 
implementation of the Vegter yield function. 
 
 

Vegter fitted 

Hill 
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3.6 Alternative description of the Vegter yield function 
 
The Vegter yield function is related to reference point data in the principal stress 
space. Hence the stress state is expressed in principal stresses and a planar angle. 
Because of this the definition of the derivative of the yield function is rather extensive 
and the stress projection procedure turns out to be quite complicated (appendix B).  
 
To avoid complicated procedures, the possibility of defining the yield function directly 
in general stress components is investigated. In this case no intervention of principal 
stresses and the planar angle are involved. Such a definition can be obtained by 
using 3D interpolation functions to define the yield function between the 
measurements. Figure 3-12 illustrates this for the same measurements as for the 
current Vegter yield function. 

 
 

Figure 3-12 Yield surface in the σxx, σyy and τxy space 

 
The red dots indicate the reference points for 0° to the rolling direction. The black 
dots give the reference points based on measurements performed for a planar angle 
of 45°. The measurements for 90° are on the back side of the surface. 

==

==

==

rreeffeerreennccee  ppooiinnttss  ffoorr  00°°

rreeffeerreennccee  ppooiinnttss  ffoorr  4455°°

!
yy

!
xx

"
xy



Elaboration of the Vegter yield function 

 55 

Figure 3-13 explains the uni-axial reference point for 45°. The uni-axial stress for a 
planar angle of 45° is equivalent to an equi-bi-axial stress and a shear stress at the 
same time at 45°, on condition that the absolute values of both stress states are 
equal to half the uni-axial stress (σ=τ=1/2σun(45°)). This is illustrated by the transition 
of the upper white box to the two boxes below in figure 3-13. The equi-bi-axial stress 
can also be represented by the same stress, rotated through 45°. The shear stress 
can be replaced by two opposite normal stresses, rotated through 45°. These 
situations are shown in the following white boxes. By using the principle of 
superposition, both stress states together make up the stress in the lower white box. 
This stress state defines the situation in the stress space represented by the black 
dot on the upper side of the surface. The other reference points are derived in a 
similar way.  

 
Figure 3-13 Uni-axial point for different angles in the σxx, σyy and τxy space  

 
As in the 2D Vegter representation, the reference points define a location and a 
gradient in the stress space.  A suitable 3D surface interpolation technique has to be 
found to interpolate the reference points. A number of surface descriptions are 
available, commonly used in computer graphics and CAD-CAM software (Salmon, 
1987), (Dewey, 1988). Many descriptions are able to describe the yield surface and 
can provide continuity of the normal. The Bezier patch catches the eye, because this 
interpolation technique is an extension of the 2D Bezier interpolation function to 3 
dimensions. It uses the available information of the measurements (location and 
gradient) and captures exactly the current 2D Bezier interpolation technique. 
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The advantage of the 3D surface interpolation technique is that it directly defines the 
yield function in general stress terms (σxx), (σyy) and (τxy). The disadvantage is that 
the interpolation itself is more complicated. Also the choice of the relevant part of the 
surface, now defined by the ratio of principal stress components (compare figure 3-6) 
will be more complicated. Future research has to be carried out to establish whether 
a 3D surface could be viable. 
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4 Elaboration of hardening functions 
 
 
To describe the yield locus after plastic deformation, the Vegter yield function is 
extended by two hardening models. The first model is the physically based model of 
chapter 2 in order to represent isotropic hardening. This model defines only the size 
of the yield surface (figure 2-8). The second model is an extension to isotropic 
hardening models to include cyclic hardening behaviour in a reverse loading path 
(Vreede, 1992). The model is a combination of isotropic and kinematic hardening 
(figures 2-8 and 2-10).  
 
This chapter describes the numerical implementation of the hardening models in a 
finite element code. Section 4.1 starts with the physically based model. Subsequently 
section 4.2 discusses the anisotropic hardening model. 
 

4.1 Physically based isotropic hardening model 
 

4.1.1 General outline 
 
At isotropic hardening the size of the yield surface increases with plastic deformation 
(chapter 2). The size is given by the average uni-axial yield stress (σy), in this 
dissertation called simply the yield stress: 

 
4. 1 

 
where σUN(θ) is the first component of the uni-axial reference point for the planar 
angle (θ) 
 
To increase the size of the Vegter yield locus, the reference point location must be 
linked to the yield stress. This is achieved by normalising the reference points: 
 

 
4. 2 

 
 

where 
 
 
are the reference and hinge points positions in the stress space (i=0,1,2) 
 

are the normalised position of the reference and hinge points (i=0,1,2) 
 
 

4

)90()45(2)0( ooo

UNUNUN
y

!!!
!

++
=

( )
y

i

in
!

"
!

!

"
!

!
)(

2

1

2

1

##
$

%
&&
'

(

=##
$

%
&&
'

(

)(
2

1 !
"

"

i

##
$

%
&&
'

(

)(
2

1 !
"

"

ni

##
$

%
&&
'

(



Elaboration of hardening functions 

 58 

Consequently each reference point is defined by its normalised format multiplied by 
the yield stress: 
 

4. 3 
 
 

In this way the distance from each reference point to the origin is increased by the 
same factor when the yield stress increases with plastic deformation. The Vegter 
yield surface before and after plastic deformation is illustrated in figure 4-1.  
 

Figure 4-1 Vegter yield surface before (initial) and after plastic deformation at 
isotropic hardening for an arbitrary planar angle θ 

 
The physically based hardening description from Bergström (Bergström, 1969), van 
Liempt (v Liempt, 1988) and Vegter (Vegter, 1991) is considered. Bergström derived 
a general hardening description based on the multiplication of dislocations with 
plastic deformation. Van Liempt and Vegter adapted the description for larger 
deformations.  
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The description is given by: 
 

4. 4 
 

where 
 
y

!  is the yield stress 

0y
!  is the initial yield stress, which depends on strain rate and temperature 

p
!  is the equivalent plastic strain 
!0  is the initial strain parameter  
!"

m
 is a stress increase constant for strain hardening, micro-structure related 

!  is a constant, micro-structure related 
!  is a constant, micro-structure related 
n'  is a strain hardening exponent, micro-structure related 
 
The parameters Δσm, β, Ω and n’ are micro-structure related, but in practice taken 
from mechanical measurements.  
 
Vegter added the strain rate influence to the parameter σy0 : 

4. 5 
where 
 
!0  is the static yield stress  
! *  is the dynamic part of the yield stress 
 
Here the dynamic part is given by: 

 
4. 6 

 
 
where 
 
k  is the Boltzman number, 8.617⋅10-5 eV 
T  is the temperature 
p

!&  is the equivalent strain rate 
&!0  is the limit strain rate (Vegter, 1991)  
σ∗

0 is the limit dynamic flow stress  
m’ is the exponent for the dynamic stress 
ΔG0 is the maximum activation enthalpy 
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The parameter σ*0 is fitted from mechanical measurements. The dynamic part (4. 6) 
has 2 restraints: 
 
1. To avoid a negative strain rate influence, the term between brackets must be 

positive: 
 

  4. 7  
 

     When the term is less than 0, the strain rate influence is considered zero. 
 
2. To have a decreasing strain rate influence at higher temperatures, the strain rate 

has to be smaller than the limit strain rate: 
4. 8 

 
     Otherwise the strain rate influence is considered maximum and  equal to σ0*. 
  
The combination of (4. 4), (4. 5) and (4. 6) provides the total relation for the yield 
stress as a function of the equivalent plastic strain: 

 
4. 9 

 
In the rest of this dissertation the first term is called the work hardening term (σwh) 
and the last term is called the dynamic term (σdyn): 
 

4. 10 
 

4.1.2 Stiffness matrix implementation 
 
To implement the physically based hardening function in the stiffness matrix, the 
hardening parameter (f) must be determined (section 2.3.1). At isotropic hardening 
the hardening parameter is equal to the slope on the hardening curve, see appendix 
D: 

 
 

4. 11 
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In an incremental analysis the equivalent plastic strain rate is defined by the 
equivalent plastic strain increment: 
 

  
4. 12 

where 
 
Δεp is the equivalent plastic strain increment in a finite element step 
Δt  is the time increment of the finite element step, which is an input parameter in 

a finite element simulation. 
 
Now the total relation for the hardening is given by: 

 
 
 

4. 13 
 
 
 
 
 
 
 

When the term between brackets on the right hand side is smaller than 0 or larger 
than 1, the strain rate influence on the hardening parameter is considered zero, see 
equations  (4. 7) and (4. 8). The consequence is that the hardening is discontinuous 
at the transition to these situations. 
 

4.1.3 Stress update algorithm implementation 
 
To implement the physically based hardening function in the stress update algorithm, 
the hardening tensor (β) must be determined (section 2.3.2). 
  
At isotropic hardening the tensor (β) can be replaced by the yield stress (σy). The 
yield stress is a function of the total equivalent plastic strain and the equivalent plastic 
strain rate (expression 4. 10): 
 

4. 14 
In an incremental analysis the equivalent plastic strain rate is defined by the 
equivalent plastic strain increment (equation 4. 12).  
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Consequently the hardening tensor (β) - in general a function of the derivative of the 
yield function to this tensor (∂φ/∂β), the hardening parameter (f), the plastic multiplier 
(λ) and the plastic multiplier increment (Δλ) – is replaced by the yield stress (σy), 
which is a function of the equivalent plastic strain (εp) and the equivalent plastic strain 
increment (Δεp): 
 

4. 15 
 
 

The plastic multiplier (λ) and the equivalent plastic strain (εp) are defined by the 
values at the start of a finite element step and the incremental values (Δλ and Δεp 
respectively). The initial values remain fixed during the stress update, so (4. 15) is 
rewritten as: 

 
4. 16 

 
 
The relation between the plastic multiplier increment (Δλ) and the equivalent strain 
increment (Δεp) is derived as follows. The equivalent plastic strain increment is 
defined by the incremental format of equation (2.7): 
 

 
 

or 
 

4. 17 
 

where 
 

is the stress tensor 
is the plastic strain increment tensor 
 

The plastic strain increment tensor is related to the plastic multiplier increment (Δλ) 
by the normality principle of Drucker (equation 2.13): 
 

4. 18 
 

 
With relations (4. 16), (4. 17) and (4. 18), the numerical procedure of scheme 2-1 is 
rewritten to scheme 4-1: 
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 Initialisation of i,Δλi,Δλi-1, Δεp 

 
While                                do 

 
 
   
 
  Determine Δλi+1 by 

 
with                  
 

  i=i+1 
 

End while 
 
Scheme 4-1 Stress update procedure for isotropic hardening material 
 
Due to the restraints in the dynamic part of the hardening function, the numerical 
procedure of scheme 4-1 is not stable. When the plastic strain increment in the 
procedure is so low that equation (4. 7) is violated, the dynamic part vanishes. When 
the plastic strain increment in the procedure is as large that (4. 8) is violated, the 
dynamic part is maximal. The effect of restraint (4. 7) is shown in figure 4-2, which 
illustrates a projection of the yield stress (σy) as a function of the plastic strain 
increment tensor (Δεp). The thick solid curve represents the yield stress - strain 
increment tensor relation with the dynamic part and the dotted curve the relation 
without the dynamic part. Due to restraint (4. 7) the dynamic part is zero below the 
strain increment Δεp*. 
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Figure 4-2 Effect of restraint (4. 7) on numerical solution process 
 
Suppose the solution process of scheme 2-1 can be represented by a Newton-
Raphson process and the correct solution is given by the yield stress (σy**) and strain 
increment tensor (Δεp**).  When the first guess is represented by the lower black dot, 
the second guess will be the upper black dot. If the tangents on the curve are as in 
figure 4-2, the third guess will be exactly equal to the first guess. So the procedure 
can be unstable by ‘swapping’ between two solutions. To avoid this problem, a new 
numerical procedure has been developed, in which the dynamic part is updated 
independently of the work hardening part. The work hardening part is updated by the 
procedure of 4-1. The dynamic part is updated by the average value of the new 
equivalent plastic strain increment of scheme 4-1 and the former equivalent plastic 
strain increment. In this way the ‘swapping’ problem is avoided and the procedure 
appears stable. The procedure is described by scheme 4-2. 
 
 
 
 
 
 

Δεp (projection) 

σy 

restriction (4. 7) 

σy** 

Δεp* Δεp** 

σdyn=0 
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 Initialisation of j,σdyn
j, σdyn

j-1,(Δεp)j,(Δεp)j-1  
 
 

While                                do 
 
 

Initialisation of i,ΔλiΔλi-1 
 
 

 While                                do 
 
 
   
 
   Determine Δλi+1 by 

 
with                  

Scheme 4-1 

    
i=i+1 

 
End while 

j=j+1 
 

End While 
 
Scheme 4-2 Stress update procedure for physically based hardening function 
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The hardening function is used in combination with the Vegter yield function. In this 
case the definition of the equivalent strain increment (4. 17) is elaborated in a special 
way. Expression (4. 17) is rewritten for a plane stress situation: 
 

 
4. 19 

 
where 
 
µ    is determined by (3.14) 
θ    is determined by the rules of tensor transformation (3.9) 
f1(µ,θ) and f2(µ,θ)  is defined by (3.13). 
Δε1* and Δε2*  are the normal strain increment components in the directions of 

the first and second principal stresses respectively.  
 
In finite element applications the equivalent plastic strain increment is determined as 
follows: 
 

1. The stress state σxx,σyy,τxy is transformed into a principal stress state σ1and 
      σ2 (equation 3.9) 
2.  The planar angle θ is determined (equation 3.9) 
3. The measured reference points are interpolated to obtain the reference 

points for the angle θ (equation 3.4) 
4. From the 7 reference points the 2 relevant reference points and the related 

Bezier function are chosen on the basis of the ratio of the principal stresses 
(figure 3-6) 

5. The normal components of the strain increment in the direction of the 
principal stresses Δε1* and Δε2* are determined 

6. The parameter µ is determined by (3.14) 
7. f1(µ,θ) and f2(µ,θ) are defined by (3.13) 
8. The equivalent plastic strain increment is determined by (4. 19) 

 

4.2 Extension to cyclic hardening behaviour 
 

4.2.1 General outline 
 
The extension of istropic to cyclic hardening behaviour was first attempted by the two 
yield surface model of (Vreede, 1992). Compared to isotropic hardening, this model 
consists of an adapted yield function and an extended hardening function. The yield 
function is described by the kinematic yield surface and the hardening function is 
defined by both the isotropic surface and the kinematic surface, see section 2.1.2. 
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The situation of the kinematic surface is denoted by the back stress tensor α, which 
defines the centre of this surface. In an incremental analysis the back stress is 
defined by the back stress increment (Vreede, 1992): 
 

 
4. 20 

 
 
 

Vreede defined the hardening on the normalised distance (D) between the kinematic 
and the isotropic yield surfaces: 

 
4. 21 

Here (fiso) represents the isotropic hardening rate and (fini) the initial hardening rate at 
a reverse loading test. The anisotropic parameter (q) is fit on experimental results. 
Figure 5-5 illustrates the kinematic and isotropic surfaces and the construction of the 
distance (D).   
 

Figure 5-5 Kinematic and isotropic yield surfaces 
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The distance (D) is defined by the points of intersection of the line through the stress 
(σ) and back stress (α) with the isotropic yield surface: 
 

4. 22 
 
Formula (4. 22) gives two solutions for a: a1 and a2. The distance (D) is determined 
by: 
 

 
4. 23 

 
In this way (D) always has a value between 0 and 1, irrespective of the size of the 
isotropic yield surface. 
 
To apply the approach of Vreede in combination with the Vegter yield function, 
equation (4. 22) is considered. To solve this equation, the Vegter yield function must 
be elaborated with the stress tensor σ in equation (3.6) replaced by the tensor 
(α+a(σ-α)). The elaboration requires the transformation of this tensor to principal data 
and a planar angle. In this case the planar angle (θ*) can be obtained by rerwiting 
equation (3.9) to: 

 
 

4. 24 
 
 
 

 
Here (αxx), (αyy) and (αxy) are the components of the back stress tensor in a plane 
stress situation. If the principal stresses have the same angle to the rolling direction 
as the principal back stresses, the planar angle (θ*) is equal to the planar angle (θ) of 
the stress. In general this is not the case, so the planar angle θ* depends on the 
solution of (a).  Because the planar angle is variable, the relevant Bezier curve can 
not be chosen in advance. This resembles the problem in the Euler-backward 
method, see section 3.4.  To avoid an extensive numerical procedure, the anisotropic 
hardening description is modified.  
 
The new description is discussed in the following sections. In section 4.2.2 new 
surfaces are defined which provide the basis for the description. Section 4.2.3 
explains how the hardening function is defined with the new surfaces. Subsequently 
section 4.2.4 investigates the extension from cyclic to an arbitrary deformation path. 
The new description also involves an adaptation of the Vegter yield function, which is 
discussed in section 4.2.5. The implementation in a finite element code is described 
in sections 4.2.6 and 4.2.7. 
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4.2.2 Introduction of new surfaces 
 
The new anisotropic hardening description uses 3 surfaces. The yield function is still 
defined by the familiar kinematic yield surface: 

4. 25 
or 

4. 26 
 

with (σ) the stress tensor, (α) the back stress tensor and (σ*) the effective stress 
tensor. The term (σ0) is the initial yield stress. The planar angle in the yield function 
(θσ*) is defined by the angle of the principal directions of the effective stress tensor to 
the rolling direction: 

 
 

4. 27 
 
 
 

 
The new hardening function is determined by 2 new surfaces, defined by the back 
stress tensor (α). Hence the planar angle in the hardening function is defined by the 
angle (θα) of the principal back stresses to the rolling direction: 
 

 
Note that this planar angle differs from the planar angle of the stress (equation 3.9) 
and from the planar angle of the effective stress (equation 4. 27). It will turn out in the 
following that this is not a problem as the different planar angles are used in different 
mathematical formulations 
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The first new surface is called the equivalent shift surface and the second is called 
the limit shift surface. The equivalent shift surface is defined by the back stress 
tensor. The size of this surface is given by the equivalent back stress (αeq), which is 
is defined by: 
 

4. 28 
 

where 
 
σy   is the yield stress 
 
αeq  is the equivalent back stress, which represents the size of the equivalent shift 

surface  
θα is the planar angle of the back stress 
α1 is the first principal back stress 
α2 is the second principal back stress 
 
The part between brackets is the Bezier interpolation function, defined by the ratio 
(α1/α2). Expression (4. 28) is derived from the expression for the equivalent stress in 
section 3.2.4. 
 
The second surface is called the limit shift surface. This surface describes the 
maximum equivalent shift surface. The surfaces are illustrated in figures 4-4 to 4-11 
during a uni-axial tension-compression deformation. In this example the yield function 
is assumed planar isotropic, hence all surfaces have the same shape and the 
kinematic yield surface can be represented in the principal stress space.  
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Figure 4-4 Surfaces at initial tension Figure 4-5 Surfaces at  larger tension 

 
Figure 4-6 Surfaces at initial 
compression 

Figure 4-7 Surfaces at  larger 
compression (1) 
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Figure 4-8 Surfaces at larger 
compression (2) 
 

Figure 4-9 Surfaces at  larger 
compression (3) 

 
Figure 4-10 Surfaces at larger 
compression (4) 
 

Figure 4-11 Surfaces at larger 
compression (5) 
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In the initial situation the kinematic yield surface is at the centre of the stress space. 
When the material deforms plastically in uni-axial tension, the kinematic surface 
translates in the uni-axial direction, see figure 4-4. The equivalent shift surface is 
defined in such a way that the back stress is on this surface. The size is denoted by 
the equivalent back stress (αeq). The limit surface represents the maximum 
equivalent shift surface, hence it is equal to the equivalent shift surface at initial 
tension. When plastic deformation proceeds, the kinematic surface translates further 
in the same direction and the equivalent and limit shift surfaces grow, see figure 4-5. 

When the material is plastically compressed after tension, the kinematic 
surface translates in the negative uni-axial direction. Because the back stress is on 
the shift surface, this surface decreases in size, see figure 4-6. The limit-shift surface 
represents the maximum equivalent shift surface, hence it remains the same size just 
after the tension deformation. The size of the limit shift surface is denoted by the 
maximum equivalent back stress (αlim). When the compression deformation 
proceeds, the kinematic surface translates further in the negative uni-axial direction 
and the equivalent shift surface decreases in size, see figure 4-7. This continues until 
the kinematic surface is at its original position and the size of the equivalent shift 
surface is zero, see figure 4-8. After this the equivalent shift surface increases again 
in size, see figures 4-9 and 4-10. When the size of the equivalent shift surface has 
reached the size of the limit surface, the size of the limit surface increases together 
with the equivalent shift surface, see figure 4-11. 
 
 

4.2.3 Hardening definition 
 
To obtain a mathematical relation for the hardening, the slopes on a realistic  
hardening curve are considered, see figure 4-12.  
 
Figure 4-12 illustrates the different hardening stages. Parts (b) and (f) represent 
proportional hardening. In these parts the equivalent shift and limit shift surfaces are 
equal (αeq=αlim). Parts (d) and (e) represent the anisotropic parts of the hardening 
curve. In these parts the equivalent shift surface is smaller than the limit shift surface 
(αeq<αlim). At the start of part (d) and at the end of part (e) the equivalent shift surface 
is equal to the limit shift surface (αeq=αlim). These situations coincide with figures 4-5 
and 4-10 at uni-axial tension. At the transition from (d) to (e) the size of the equivalent 
shift surface is zero (αeq=0). This situation coincides with figure 4-8. In parts (d) and 
(e) the values of (αeq) can be the same, but the hardening is different. To consider 
different hardening behaviour in parts (d) and (e), the change in the value of (αeq) is 
taken into account. In part (d) the value decreases and in part (e) the value 
increases. When the value decreases, the hardening is larger than when the value 
increases. 
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Figure 4-12 Realistic hardening curve 
 
To relate the hardening behaviour of figure 4-12 to the definitions of the equivalent 
and limit shift surfaces, the original anisotropic hardening relation of Vreede (4. 21) is 
modified by replacing the distance (D) by a function of the surface definitions: 

  
4. 29 

 
when the value of (αeq) decreases (i.e. stage (d) of the hardening curve), and 

 
 

4. 30 
when the value of (αeq) increases (i.e. stage (e) of the hardening curve) 
 
where 
 
fini    is the initial hardening rate in a load reversal 
fiso    is the hardening rate at isotropic yielding 
αeq   is the equivalent back stress 
αlim   is the maximum equivalent back stress  
q      is the anisotropic hardening parameter (to be fit from experimental results) 
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4.2.4 Extension to arbitrary deformations 
 
For arbitrary deformations the new hardening function has to be adapted to obtain a 
continuous hardening behaviour. For instance suppose that after a uni-axial tensile 
deformation a shear deformation occurs. During the shear deformation the kinematic 
yield surface will translate along the dotted line in figure 4-13. As in the cyclic loading 
case, at a certain point the value of (αeq) will change from decreasing to increasing.  
The difference with the cyclic case, however, is that the ratio is not equal to 0 at this 
moment. This means that the hardening suddenly changes from a value 

to 

 
Hence the consequence is that the hardening is not continously defined in this case. 
This is not physical and can give problems in the numerical implementation in a finite 
element code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4-13 Situation at which the value of (αeq) changes from decreasing to 
increasing 
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The discontinuity in the hardening during a non-proportional test can be solved by 
adapting the hardening definition to  

 
4. 31 

 
 
with 

 
Here the term (cosα) describes the cosine of the angle between the current back 
stress (α) (i.e. the current situation of the centre of the kinematic yield surface) and 
the back stress increment (Δα) (i.e the translation increment of the centre of the 
kinematic surface. The term can have the following values: 
 
• It has the value 1 when the increment (Δα) and (α) are in the same direction. 

This is the case in a proportional deformation. 
• It has the value –1 when the increment (Δα) and (α) are in opposite directions. 

This is the case in the beginning of a reverse loading deformation. However, 
when the stress has travelled through the origin of the stress space, the value 
changes into +1. So in a cyclic loading case the result is exactly the same as 
without the term. 

• It has the value 0 when the increment (Δα) and (α) are in perpendicular 
directions. For instance this is the case at the beginning of a shear deformation 
just after a plane strain deformation state. After successive shear deformation 
the term will approach 1 again.  

 
Recapitulating, for a proportional or cyclic loading path the hardening description 
remains unaffected. For a non-proportional loading deformation the adapted 
description takes care of a continuous hardening behaviour. For the time being the 
adaptation is only utilized to prevent numerical instabilities and is not based on 
experimental data. In chapter 5 the adaptation is examined with a non-proportional 
deformation. 
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4.2.5 Yield function adaptation 
 
At anistropic hardening the kinematic yield surface defines the yield condition. 
Compared to isotropic hardening, the yield function is changed from: 

to 
4. 32 

or 
4. 33 

where (σ) is the stress tensor, (α) is the back stress and (σ*) is the effective stress 
tensor. The term (σy) represents the isotropic yield stress and (σ0) is the initial yield 
stress. So no change in the yield criterion itself is made, only the stress tensor is 
replaced by the effective stress tensor and the isotropic yield stress is replaced by the 
initial yield stress.  
 
In finite element applications the yield function is determined by the following steps: 
 

1. The stress state σxx,σyy,τxy is adapted with the back stress αxx,αyy,αxy to 
σ*xx,σ*yy,τ*xy   

2. The effective stress state is transformed into a principal stress state σ*1,σ*2 
(equation 3.9) 

3. The planar angle θσ* of the effective stress is determined (equation 3.9) 
4. The measured reference points are interpolated to obtain the reference 

points for the angle θσ* (equation 3.4) 
5. From the 7 reference points the 2 relevant reference points and the related 

Bezier function are chosen on the basis of the ratio of the effective principal 
stresses (figure 3-6) 

6. The yield function is determined according to 3.10, 3.13 and 3.14 
 

4.2.6 Stiffness matrix implementation 
 
To implement the new hardening description in the stiffness matrix,  the derivative of 
the yield function and the hardening parameter (f) must be determined (section 
2.3.1). 
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Derivative of the yield function 
 
The derivative of the yield function to the stress tensor can also be written as a 
function of the derivative to the effective stress tensor, assuming an independent  
back stress tensor: 

 
4. 34 

 
This expression is elaborated in a way similar to the procedure in section 4.3.1, with 
the stress (σ) replaced by the effective stress (σ*) and the isotropic yield stress (σy) 
replaced by the initial yield stress (σ0). In a finite element code the derivative is 
determined by the next steps: 
 

1. The stress state σxx,σyy,τxy is adapted with the back stress αxx,αyy,αxy to 
σ*xx,σ*yy,τ*xy   

2. The effective stress state is transformed into a principal stress state σ*1,σ*2 
(equation 3.9) 

3. The planar angle θσ* of the effective stress is determined (equation 3.9) 
4. The measured reference points are interpolated to obtain the reference 

points for the angle θσ* (equation 3.4) 
5. From the 7 reference points the 2 relevant reference points and the related 

Bezier function are chosen on the basis of the ratio of the effective principal 
stresses (figure 3-6) 

6. The derivatives of the yield function to the principal stresses are defined 
(a1,a2 of equation 3.17)  

7. The derivatives of the principal stresses to general stress components are 
determined (b1, b2 of equation 3.17) 

8. The derivative of the cosine of twice the planar angle to the stress 
components is determined (d of equation 3.17) 

9. The derivative of the yield function to the cosine of twice the planar angle is 
defined (c of equation 3.17) 

10. The derivative is constructed by expression (4. 34) 
 
 
Hardening parameter (anisotropic hardening) 
 
The hardening definition is handled extensively in the former sections. The basis for 
the finite element implementation is equation (4. 31).  This equation is elaborated as 
follows: 
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1. The back stress is transformed into a principal back stress α1,α2 (equation 

3.9) 
2. The planar angle θα of the back stress is determined (equation 3.9) 
3. The measured reference points are interpolated to obtain the reference 

points for the angle θα (equation 3.4) 
4. From the 7 reference points the 2 relevant reference points and the related 

Bezier function are chosen on the basis of the ratio of the principal back 
stresses (figure 3-6) 

5. The size of the equivalent shift surface is determined by αeq (equation 4. 
28) 

6. The size of the limit shift surface is determined. If the size of the current 
limit shift surface is larger than the shift surface of the former step, the limit 
surface is updated 

7. The term cosα is determined by the current back stress α and the back 
stress increment Δα (equation 4. 31) 

8. The hardening f is determined according to  (4. 31) 
 

4.2.7 Stress update algorithm implementation 
 
To implement the new hardening function in the stress update procedure, the stress 
must be projected to the kinematic yield surface and the hardening tensor (β) must be 
determined (section 2.3.2). 
  
Stress projection procedure 
 
Compared to isotropic hardening, the equations for the stress projection procedure 
change from (3.18) and (3.19) to (4. 35) and (4. 36): 

 
 

4. 35 
where 

 
4. 36 

 
By substracting (α) from both sides of equation (4. 35) and rewriting the normal with 
(4. 34), equation (4. 35) is modified to: 
 

 
4. 37 
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So the stress projection procedure remains identical to the procedure of section 3.4, 
with the stress (σ) replaced by the effective stress (σ*) and the isotropic yield stress 
(σy) replaced by the initial yield stress (σ0). In a finite element code the stress is  
projected by the next steps: 
 

1. The stress state σxx,σyy,τxy is adapted with the back stress αxx,αyy,αxy to 
σ*xx,σ*yy,τ*xy   

2. The stress projection takes place according to the steps in section 3.4, with 
the isotropic yield stress (σy) replaced by the initial yield stress (σ0) 

 
 
Determination of hardening tensor 
 
At anisotropic hardening the tensor (β) can be replaced by the back stress tensor (α). 
The back stress is defined by (4. 20). Substitution of the incremental format of (2.21) 
and (4. 34) results in: 

 
 

 
 

4. 38 
 
 
 
 

 
Consequently the hardening tensor (β) - in general a function of the derivative of the 
yield function to this tensor (∂φ/∂β), the hardening parameter (f), the plastic multiplier 
(λ) and the plastic multiplier increment (Δλ) – is replaced by the back stress (α), 
which is a function of the effective stress tensor (σ*) and the stress increment 
tensor(Δσ): 

 
4. 39 

 
 

The stress increment is defined by the projected stress minus the stress at the start 
of the procedure: 

 
4. 40 

The effective stress is defined by (4. 34). With relations (4. 34), (4. 37), (4. 39) and (4. 
40) the numerical procedure of scheme 2-1 is rewritten to scheme 4-3: 
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 Initialisation of i,Δλi, Δλi-1  
 

 
While                                do 

 
 
   
 
  Determine Δλi+1 by 
 

 
with  
 

 
  i=i+1 
 

End while 
 
Scheme 4-3 Stress update procedure  
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4.2.8 Validation of numerical implementation 
 
The numerical implementation is checked with a tensile-compression test on a 1 mm 
square piece of sheet metal. The simulations are carried out with different hardening 
parameters (q) to show the influence of this parameter. The real performance of the 
model is compared with experimental results of the bi-axial test equipment in chapter 
5.  
 
The hardening data are given in table 4-1. The first columns show the Nadai-Ludwik 
hardening data and the last column gives the anisotropic hardening parameter (q). 
 
 

Nadai-Ludwik extended with anistropic behaviour: 
σy (N/mm2) C n q 
181.3 727.6 0.34 0.02 0.5 

table 4-1 Anisotropic hardening data 
 
The test is illustrated by figure 4-14. 

figure 5-13 Four-element validation case 
 
The test is divided into two parts. Nodes 2 and 5 are first prescribed in the tensile 
direction with 0.001 mm per step. Then, 50 steps are imposed to reach a 
displacement of 0.05 mm. Subsequently the nodes are prescribed in the compression 
direction with -0.001 mm per step (second part). In this part 100 steps are applied 
which results in an extra displacement of –0.100 mm. The unbalance criterion is set 
at 0.1 percent.  
 

1 2

3

4 5



Elaboration of hardening functions 

 83 

Five simulations are carried out: the first with the isotropic Nadai-Ludwik model and 
the second til the fifth with the anisotropic hardening model with the hardening 
parameter (q) varying from 0.02 to 0.5. The force-displacement curves of the 
simulations are given in figure 4-15. 

 
figure 5-15 Force (F) displacement (u) curves 

 
The anisotropic hardening model shows identical force displacement curves as the 
isotropic Nadai-Ludwik model in the tensile part of the test. In the compression part 
differences are clearly observed. The influence of the parameter (q) becomes 
apparent: when this parameter has a larger value, the hardening rate will reach the 
isotropic value sooner. 
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5 Bi-axial test equipment

At the university of Twente a bi-axial test equipment has been designed. The general
purpose of the equipment is testing sheet material behaviour under multi-axial and
non proportional loads. The equipment is capable of combining a plane strain
deformation together with a shear deformation on a piece of sheet metal. The shear
deformation can be imposed in 2 directions and the plane strain deformation can be
imposed in tension and compression. The central part of the equipment is illustrated
by figure 5-1. In this figure also the position of the test piece is illustrated. The arrows
indicate the directions of movement of the tester. The upper part can move in a
horizontal direction. This is the movement for the shear deformation. The lower part
can move in a vertical direction. This is the movement for the plane strain
deformation.

Figure 5-1 Illustration of the central part of the test equipment

Within the scope of this research the test equipment is used for the following
purposes:

• Determination of the shear and plane strain reference points of the Vegter

yield function
• Determination of the hardening parameter for the anisotropic hardening

description (q)
• To check whether the current material description gives a reasonable

approximation of the material behaviour under non-proportional loads.
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This chapter describes how the equipment is used for these purposes. Section 5.1
starts with a description of the test equipment, which was designed by ing
J.Brinkman. In this section the mechanical functions of the equipment are dealt with.
Moreover some modifications to the equipment are shown. Section 5.2 discusses
finite element simulations of the experiments. With these simulations the influence of
edge effects on the stress and deformation in the test piece can be examined. These
effects occur at the edges of the test piece and at the transition from the deformation
zone to the clamping zone. Subsequently, section 5.3 deals with the data acquisition.
In this section the ‘raw’ test data of plane strain and shear experiments are
transformed to desired stress-strain data. Section 5.4 links the test equipment data to
the Vegter yield function description. Here the plane strain and shear reference
points are determined. To obtain also data for the anisotropic hardening function,
section 5.5 describes cyclic experiments. Finally, the current material description is
compared with results of non-proportional tests in section 5.6.

5.1 Description of the test equipment

Figure 5-2 Total test equipment

1

2 3

GM HD

VD

VF

HF
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The equipment is illustrated in figure 5-2. It can be divided into 3 parts:

• The main part (1) which imposes the deformation on the test piece.

Figure 5-1 shows this part in more detail
• The motion control part (2), which steers and controls the motion of the clamps.

This part also measures the forces and displacements on the clamps and stores
these data on a computer hard disk

• The deformation analysis part (3). This part accounts for measuring the deformation

in the middle of the test piece.

Each part is described briefly:

Part 1

This part is also illustrated in figure 5-1. The central part of the tester is shown, two
pairs of clamps which impose the deformation on a test piece. The dimensions of the
test piece are given in figure 5-3. The test piece consists of a deformation section
and two clamp sections. In the deformation section the material is forced into a
deformation by the clamps. In each clamp section the material is clamped between
two clamps, existing of pieces of hardened steel. Four Pins are stabbed through the
clamps and the sheet material to secure the sheet material to the clamps. Figure 5-4
also shows a shaded part in the middle of the test piece. This part is modelled by
finite elements, which will be referred to in section 5.2.

26 45

3

45

55

35

clamping

part

clamping

part

deformation

part
9

part modelled by

finite elements

Figure 5-3 Dimensions of the test piece
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A schematic representation of the deformation zone loaded in shear and plane strain
is given in figure 5-4.

shear

shear

plane strain

plane strain

deformation part

Thickness

of the

sheet

Figure 5-4 Combination of a shear load and a plane strain load on sheet metal

The width of the deformation zone of the sheet is large relative to the height, this is a
requirement for the plane strain test. The height must be chosen not too large relative
to the thickness, see for instance (G’Sell, 1983).

The clamp force between the clamps and the sheet is applied by tightening 4 bolts
with the maximum allowed moment. The clamps were re-designed. Originally the
steel sheet was clamped with pieces of files. The disadvantages of these files were:

• The files had a certain orientation. Due to this orientation, the sheet was fixed

better in one direction than other directions.
• The files were not totally flat. As a result some parts of the sheet were fixed

better and some less. This lead to an inhomogeneous deformation.
• One part of the clamp consisted of 6 files. Not all files had exactly the same

thickness. As a result the part of the sheet under some files was fixed better
than under other files. This contributed to an inhomogeneous deformation.

The new clamps consist of hardened powder metallurgy blocks, which have the
following advantages:

• The blocks are symmetrical in every direction, so no orientation problems

occur during the tests.
• The blocks were made of 1 piece with a spark-erosion technique. The

accuracy of this technique warrants a flat clamp surface.

A diagram of the clamp blocks is shown in appendix F. Also a few other new parts
were designed to improve and complete the equipment, see appendix G.
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Part 2

The second part is the motion control part, see figure 5-2. This part consists of the
following components:

• a Galil Motion controller (GM)

• a Zwick motor which accounts for the vertical movement of the clamps.

• a side motor which accounts for the horizontal movement of the clamps

• a Vertical Force measurement device (VF)

• a Horizontal Force measurement device (HF)

• a Vertical Displacement measurement device (VD)

• a Horizontal Displacement measurement device (HD)

The motion controller (GM) controls the motion of the test equipment. Table 5-1
shows the features of the controller.

Max
displacement

Min
displacement

Min Velocity Max velocity

Horizontal
motion

5 mm left
5 mm right

0.00001 mm 0.00001 mm/s Not known
(>1 mm/s)

Vertical
motion

5 mm up
5 mm down

0.01 mm 0.05 mm/s Not known
(> 1 mm/s)

Table 5-1 Features of the motions of the tester

The vertical force measurement device (VF) is a Zwick load cell, attached to the
Zwick frame. The horizontal force measurement device (HF) is a Pekel load cell,
attached to the frame for the horizontal movement. The properties of these load cells
are listed in table 5-2.

Max Force Min Force Accuracy

Horizontal
motion

100000 kN -100000 kN 50 N

Vertical
motion

100000 kN -100000 kN 20 N

Table 5-2 Features of the load cells

The vertical displacement measuring device is incorporated into the Galil motion
controller. This motion controller measures the revolutions of the Zwick motor and
transforms it into a displacement. The horizontal movement is measured in a similar
way.
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Part 3

The third part is the deformation analysis part. The deformation analysis system is
based upon the recognition of objects on the sheet metal. The objects are
distinguished from the sheet metal by a difference in grey value contrast (black-
white). The objects can be tracked in real time and the co-ordinates are stored on a
harddisk in a position array. The dot-tracker system is described extensively in the
manual (DVS, 1999). The important features of the system are given by table 5-3:

Mutual Dot
distance in
Pixels

Dot size in
mm

Dot size in
Pixels

Accuracy
Theoretical

Accuracy
Practical

Horizontal
motion

± 60 pixels ± 0.2 mm ±12 pixels < 1/12 pixel 0.4 pixel

Vertical
motion

± 60 pixels ± 0.2 mm ±12 pixels < 1/12 pixel 0.4 pixel

Table 5-3 features of the deformation analysis system

As can be observed in the table, the practical accuracy is less than the theoretical
value. The value of the practical accuracy was obtained by tracking stationary dots
and detecting the position. The difference between the theoretical and practical
accuracy is probably due to light intensity variations and environmental vibrations,
which result in a less distinct contrast.

Objects on the sheet metal are created by placing dots of silicon-kit in the middle of
the test piece. Also dots of ink with a professional equipment and dots of ink from a
simple ink-pencil were tried. It appeared that silicon-kit has a few advantages:

• It is matt black and has some volume in the direction normal to the sheet. Dots

of ink are more or less flat and have a shiny appearance. Matt dots absorb
more light and due to the volume the light is reflected more diffusely.
Therefore the contrast between the sheet and the objects is best with kit-dots.

• It is elastic up to 100 % of deformation. The dots stay intact during almost

every desired deformation. Dots of ink are elastic up to a few percent of
deformation. Beyond this deformation they break into pieces which stick
independently to the sheet metal. This gives significantly less contrast
compared to the kit-dots.

Before the experiments are started, four dots are placed in the middle of the test
piece with a mutual distance of 1 mm. The dot-tracker system recognises the dots,
calculates their centre and stores the co-ordinates on the disk. The determination of
the centre is a weighted function of the grey value of the pixels. The edge of a kit-dot
will have a lower grey-value than the middle of the dot. Correspondingly the edge will
have a smaller effect on the centre than the middle of the dot. So when due to
variations in light or other external influences the edge of the dots vary slightly, this
will have a minor effect on the centre position of the dots. In this way the practical
accuracy (table 5-3) is kept within limits. The use of the deformation analysis system
will become more clear after investigating the influence of the edge effects on the
deformation.
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5.2 Edge effect determination by finite element simulations

Two types of edge effects can be considered. The first effect is the deformation of the
sheet material under the clamps. Due to this so-called clamp slip the resulting
deformation in the middle of the test piece deviates from the intended deformation.
The second effect is the deviating stress state at the free edges, which influences the
resulting stress state in the middle of the test piece. A finite element model of the test
equipment was constructed to investigate the influence of these two edge effects.

The finite element model represents the shaded part of the test piece and the clamp
equipment in figure 5-3. The parts next to the modelled part are used for positioning
the test piece. It is assumed that these parts have no influence on the deformation
and stress in the deformation area. The clamping part is modelled by two moving
clamps and two fixed clamps, see figure 5-5. In the actual test the lower clamps are
moved vertically and the upper clamps are moved horizontally. The clamp force is
related to the moment which is applied on the clamp bolts.

sheet metal

moving clamp

moving clamp

fixed clamp

fixed clamp

45

3

3

3

6 node contact

element

=

!
t

!
n

! µ
n
"

Figure 5-5 Part modelled by finite elements
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The finite element mesh is illustrateded in figure 5-6. The mesh is refined in the
areas with large deformations (at the free edges) and large deformation differences
(near the transition of the shear deformation zone D to the clamping parts C). The
piece of sheet material is modelled by sheet elements with three integration points in
the plane of the sheet and two through the thickness of the sheet (see section 2.3).

Figure 5-6 finite element mesh

The contact between the clamps and the sheet metal is modelled by contact
elements, shown in figure 5-5. The material modelling of these contact elements is
handled in detail in (Vreede, 1992). In short the behaviour is illustrated in figure 5-5
by the springs and the sliding contact. The stress in the normal direction is given by
(!n). This stress is defined by the distance from the upper surface of the contact

element to the lower surface in the normal direction. The stress in the tangential
direction is given by (!t). This stress in the tangential direction is initially defined by

the distance from the upper surface of the contact element to the lower surface in the
tangential direction (stick). When the stress is higher than the normal stress (!n)

multiplied by the friction coefficient (µ), this value is defined by the latter (!t=!n"µ)

(slip). In the simulations the friction coefficient was set to 1.0, which aims on the
demands that slip has to be limited. This high friction coefficient aims on the
demands that slip has to be avoided. In this way the estimation of the high friction
coefficient is justified. In reality the clamps consist of rough surfaces which fixes the
steel sheet with sharp tips. It is realised that the modelling of the clamps does not
represent reality entirely.

The simulations investigate only the edge effects in proportional deformations. The
influence of edge effects during a plane strain deformation on the resulting plane
strain data and the edge effects during a shear deformation on the shear data are
determined. To provide a good prediction of the edge effects in non-proportional
tests, also the edge effects of an imposed shear deformation on the plane strain data
and vice versa should be examined. The simulations of a proportional shear and
plane strain test are discussed separtely in the following sections.

C

C

D
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5.2.1 Shear simulation

A shear simulation is performed by moving the upper clamp to the right. The result of
4 mm clamp displacement is given by figure 5-7. In this figure the yield stress after
deformation is illustrated.

Figure 5-7 Yield stress in the deformed mesh

Figure 5-7 shows clearly the shear edge effects. Firstly the clamp slip is visible: the
deformation is not limited to the deformation region (D), but spreads to the clamp
zones (C). Secondly the deformation at the free edges is different from the rest of the
test piece. To investigate the edge effects quantitatively, the resulting stress and
strain situation in the 4 middle elements is focussed on:

Influence of clamp slip on the 4 -lement shear deformation

Without clamp slip, the deformation in the test piece is given by:

5. 1

where

#uclamp is the clamp displacement

hD is the height of the deformation zone
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The finite element simulation predicts the deformation in the middle of the test piece,
taking into account the clamp slip. Four elements in the middle of the test piece are
observed, see figure 5-8:

1 2

3 4

!
SH

"u3

h

"u1

Figure 5-8 Deformed mesh of 4 middle elements

The shear deformation of the middle elements is given by the ratio of the relative
displacement (#u3-#u1) of the upper nodes and the height h of the element:

5. 2

The results are observed for different clamp displacements, see table 5-4. A
deformation correction factor can be defined by the ratio of (5. 2) to (5. 1). Because
the clamp model does not represent reality entirely, the correction factors only give
an indication.

Influence of deviating edge stress on the 4-element shear stress

Without a deviating stress state at the free edges, the shear stress is given by:

5. 3

where

FX is the horizontal clamp force
a is the initial sheet thickness
L is the length of the test piece
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The finite element simulation predicts the stress in the middle of the test piece, taking
into account the deviating edge stress, see figure 5-8.

5. 4

The results of (5. 3) and (5. 4) are observed for different clamp displacements, see
table 5-4. A stress correction factor is defined by the ratio of (5. 4) to (5. 3). The
modelling of the free edges is assumed to represent the real situation satisfactorily,
so the correction factors can be used to in the data acquisition of section 5.3.

5.2.2 Plane strain simulation

A plane strain simulation was performed by moving the upper clamp upwards. The
result of 1 mm clamp displacement is given by figure 5-9. In this figure the yield
stress is shown.

Figure 5-9 Yield stress in the deformed mesh

Figure 5-9 shows clearly the plane strain edge effects. Firstly the clamp slip is visible:
the deformation is not limited to the deformation region (D), but it spreads into the
clamp zones (C). Compared to the shear deformation this effect is more apparent,
which indicates that it is quite difficult to restrict slip in a plane strain experiment.
Secondly the stress at the free edges is different to that in the rest of the test piece.
The stress and deformation are checked quantitatively.
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Influence of clamp slip on the 4-element plane strain deformation

Without clamp slip, the plane strain deformation is given by:

5. 5

where

#uclamp is the clamp displacement

hD is the height of the deformation zone

The finite element simulation predicts the deformation in the middle of the test piece,
taking into account the clamp slip. Four elements in the middle are observed, see
figure 5-10.
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!v3
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3

!v1

Figure 5-10 Deformed mesh of 4 middle elements

The plane strain deformation of the middle elements is given by the ratio of the
relative displacement of the upper nodes (#v3-#v1) to the height (h) of the element:

5. 6

The results are observed for different clamp displacements, see table 5-4. A
deformation correction factor can be defined by the ratio of (5. 6) and (5. 5). Because
the clamp model does not represent reality entirely, the correction factors only give
an indication.
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Influence of deviating edge stress on the 4-element plane strain stress

Without a deviating stress state at the free edges, the plane strain stress is given by:

5. 7

where

FY is the vertical clamp force
a is the initial sheet thickness
ac is the current sheet thickness
L is the length of the test piece

The thickness is calculated by the thickness strain ($thick), which is assumed to be

minus the strain ($PS) in the tensile direction.

The finite element simulation predicts the stress in the middle of the test piece, taking
into account the deviating edge stress, see figure 5-10:

5. 8

The results of (5. 7) and (5. 8) are observed for different clamp displacements, see
table 5-5. A stress correction factor is defined by the ratio of (5. 8) to (5. 7). The
modelling of the free edges is assumed to represent the real situation satisfactorily,
so the correction factors can be used to in the data acquisition of section 5.3.
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Imposed horizontal displacement 0.02 2.00 4.00

Intended shear deformation 0.02/3 2/3 4/3
Real shear deformation 0.0064 0.6420 1.1822
Deformation correction factor 0.964 0.963 0.887
Horizontal clamp force (N) 4699 10104 11460
Shear stress based on clamp force (Mpa) 104.4 224.5 254.6
Shear stress middle node (Mpa) 106.3 228.8 260.0
Stress correction factor 1.018 1.019 1.021

Table 5-4 Shear correction factors

Imposed vertical displacement 0.05 1.00 2.00

Intended plane strain deformation 0.05/3 1/3 2/3
Real plane strain deformation 0.008 0.108 0.271
Deformation correction factor 0.48 0.33 0.4065
Vertical clamp force (N) 12024 17126 17335
Plane strain stress based on clamp force (Mpa) 269.4 424.0 505.1
Plane strain stress middle node (Mpa) 276.7 441.3 531.9
Stress correction factor 1.027 1.049 1.053

Table 5-5 Plane strain correction factors

5.3 Data acquisition

During experiments data are sampled from the measuring devices and stored on a
computer hard disk. The data are forces from the force measuring devices (HF and
VF in figure 5-2), displacements from the displacement measuring devices (HD and
VD in figure 5-2) and positions of dots from the deformation analysis system. To
develop a material description from the experiments, stress and strain states are
desired. This section describes how the stress and strain states are obtained from
the measured data.

The finite element simulations show that the clamp slip has a significant influence on
the strain state. Compared to the intended deformation, the deformation in the middle
of the test piece is about 10% less at the shear test and 60 % to 70 % less at the
plane strain test. The clamp model does not match the reality entirely. Therefore the
deformation correction factors only give an indication of the real clamp slip. It implies
that the deformation in the test piece cannot be related properly to the displacements
of the clamps. For this reason the deformation analysis system is used. This system
directly measures the deformation on the sheet metal, so no clamp slip has to be
taken into account. Section 5.3.1 provides the transformation of the data from the
deformation analysis system to strain data.
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It appears that the deviating stress at the free edges has a small influence on the
stress state inside the test piece. So the stress state inside the test piece can be
determined from the forces on the clamps, with a correction of a few percent. Section
5.3.2 describes how the stress data is derived from the measured clamp forces.

5.3.1 Strain determination

The deformation analysis system measures coordinates of the centre of the dots in
the middle of the test piece. These dots are placed within the limits of the
investigated 4 elements of the former section. The determination of the strains from
the four dots is discussed separately for a shear and a plane strain deformation.

Shear strain

The shear strain is determined according to figure 5-11.
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Figure 5-11 Determination of the shear strain from camera images

The figure shows the centres of the 4 dots at the start of the test (t=0) and the
centres of the 4 dots at a sample time (t). The deformation of the sheet between dots
1 and 4 is given by (%1_4). The deformation between dots 2 and 3 is calculated in the

same way. Figure 5-12 shows the development of (%1_4) and (%2_3) during a

proportional shear test.
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Figuer 5-12 Shear strains as a function of the number (k) of camera images

Appendix H states that the measurement of the shear strain is accurate within
(%SH=0.011). The difference between the two strains remains within this accuracy, so

it can be fairly assumed that the deformation is homogeneous. The resulting shear
strain (%SH) in the sheet metal is assumed to be the average of the strains (%1_4) and

(%2_3).

Plane strain

The strain in the tensile direction is determined according to figure 5-13. The figure
shows the centres of the 4 dots at the start of the test (t =0) and the centres of the 4
dots at a sample time (t). The deformation of the sheet metal between dots 1 and 4 is
given by ($1_4). The deformation of the sheet between dots 2 and 3 ($2_3) is calculated

in the same way. Figure 5-14 shows the development of ($1_4) and ($2_3) during a

proportional plane strain test.
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Figure 5-13 Determination of the plane strain from camera images

Figure 5-14 Plane strains as a function of the number (k) of camera images

Again the assumption that the deformation is homogeneous in the observed area of
the test piece is checked. The strains tend to deviate as the test progresses.
Appendix H states that the measurement of the plane strain is accurate within
($PS=0.016). The difference between the two strains remains within this accuracy, so

it can be fairly assumed that the deformation is homogeneous. The resulting plane
strain ($PS) in the sheet metal is assumed to be the average of the strains ($1_4) and

($2_3).
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5.3.2 Stress determination

The stress state is determined from the sampled force data. The determination of the
shear stress and of the plane strain stress is discussed separately.

Shear stress

The shear stress is defined by :

5. 9

where

FX is the horizontal clamp force
a is the initial sheet thickness
L is the length of the test piece

Due to the edge effects the measured stresses have to be corrected. Table 5-4
provides the correction factors. A linear relation is assumed between the correction
factor and the shear deformation:

5. 10

with the coefficients (c1) and (c2) chosen to fit the discrete correction factors of table
5-4.

Plane strain stress

The plane strain stress is defined by:

5. 11

where

FY is the vertical clamp force
a is the initial sheet thickness
ac is the current sheet thickness
L is the length of the test piece
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Similar to the shear stress determination, the measured stresses are corrected (table
5-5). A linear relationship is assumed between the correction factor and the plane
strain deformation:

5. 12

with the coefficients (c3) and (c4) chosen to fit the correction factors of table 5-5.

5.4 Experimental determination of Vegter reference points

The bi-axial test equipment is used to determine the shear and plane strain reference
points of the Vegter yield criterion. The shear reference point is determined by a
proportional shear experiment and the plane strain point by a proportional plane
strain experiment. Both experiments are carried out for 3 directions (0°, 45° and 90°

to the rolling direction) in the plane of the sheet to take into account planar
anisotropic material behaviour.

The shear and plane strain reference points are given by the shear factor (fsh) and
the plane strain factor (fps) respectively. These factors define the ratio between the
shear and plane strain yield stress respectively on one hand and the average uni-
axial yield stress on the other hand, see figure 5-15. The average uni-axial yield
stress is given by:

5. 13

Figure 5-15 also illustrates the stress factor (farb) of an arbitrary stress state (!arb) on

the yield surface. This factor defines the ratio between the arbitrary stress and the
yield stress.

In order to determine the shear and the plane strain factors, the initial shear and
plane strain yield stress can be divided by the initial average uni-axial yield stress.
However, the initial yield stresses cannot be distinguished very easily from the
measured data (see figures 5-20 and 5-21). Therefore use is made of the fact that
hardening during a proportional deformation can be described by the isotropic
hardening model. The ratio between each stress state on the yield locus and the
yield stress remains constant in this case (section 2.1.2), so also the stress factors
remain constant.
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Figure 5-15 Graphical representation of the definition of the shear (fsh) and
plane strain (fps) factor

The stress (!arb) as a function of the strain ($arb) during a proportional deformation is

given by:

5. 14

where

5. 15
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The deformations during a plane strain and a shear test can be considered
proportional, hence the parameter (!arb) in (5. 14) is replaced by the shear stress

(!SH) for the shear experiment and (!PS) for the plane strain experiment. The

parameter ($arb) is replaced by (%SH) and ($PS) respectively. The shear and plane

strain factors can now be obtained by a least squares fit on the measured samples of
the multi-axial tester. A few remarks in the fit procedure are:

• The physically based hardening parameters of (5. 14) were supplied by Corus

RD&T. So only the parameters (fsh) and (fps) are fit to the measured data.

• The latter part of (5. 14) represents the strain rate influence. At every sample

the strain rate could be determined by comparing two successive strain
samples and divide the difference by the time between the samples. The solid
line in figure 5-16 illustrates this strain rate. Due to the limited accuracy of the
deformation analysis system this line is very erratic. Therefore the average
strain rate (dotted line) is assumed as a constant strain rate.

Figure 5-16 Strain rate as a function of number of samples (K)

• Only the samples with strains between 8 and 18 % are fit. These values are

based on experience at Corus RD&T and the UT.
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5.4.1 Shear factor determination

The shear factor is determined by the simple shear experiments. The experiments
are carried out for 3 directions (0°, 45°, 90° to RD) in the plane of the sheet to

incorporate planar anisotropic material behaviour. Two comments should be made
on the experiments:

Comment 1

The angle of the principal stresses (planar angle) is not evident during the
experiment. The finite element code in which the Vegter yield function is
implemented defines a linear material rotation in the plane of the sheet:

5. 16

Here u and v represent the displacement in the horizontal and the vertical direction
respectively and x and y are the horizontal and the vertical axis respectively. In the
simple shear experiment no displacement occurs in the vertical direction, so equation
(5. 16) can be rewritten as:

5. 17

Expression 5. 17 implies that, if the simple shear experiment were simulated with the
used finite element code, a rotation of the rolling direction would occur, equal to half
of the shear angle, illustrated by figure 5-18.

Figure 5-18 Material rotation during simple shear
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The principal stresses remain in the same direction. So the angle of the principal
stresses to the rolling direction (planar angle) is not constant during the simple shear
experiment. In the current interpretation the material rotation is not taken into
account, which is only justified when the deformation is small.

Comment 2

The clamps are fixed in the vertical direction. This allows a normal stress component
in this direction, which causes a deviation from the pure shear stress (!1'!2).

Research of Huétink (Huétink, 1991) indicated that the vertical stress can be
considered small during small deformations. So the experiment provides a fair
approximation of the pure shear reference point. In the future this can be checked by
measuring the vertical clamp force during the shear experiment.

Due to the vertically fixed clamps the deformation is restricted in the vertical
direction, so the deformation is always pure shear ($1=-$2). This is the reason that the

gradient in the pure shear reference point is not determined from the strain state.

The tested materials are sheet steel (AKS) and aluminium (AA 5182). The steel
experiments were performed 5 times for each direction. The aluminium experiments
were performed 1 time for each direction due to the lack of manpower. Fortunately
plane strain and shear experiments were also carried out at Corus RD&T for the
same type of aluminium. So the results of Corus can are used in the rest of this
dissertation. The experiments were carried out under the following conditions:

Horizontal clamp displacement: 2.5 mm
Time: 150 s
Horizontal clamp velocity: 0.05 mm/s
Number of force-samples: 250
Number of displacement samples: 250
Number of Camera samples: 8.5 per second

The shear factors are given in table 5-6 and table 5-7. If the material behaviour under
tension and compression is the same, the shear factor for 0° and 90° should be

equal. This is illustrated by figure 5-19. The first 2 situations on the left show a shear
experiment to determine the reference point for a planar angle equal to 0°. Only if the

material behaves identically under tension and compression can the second situation
be replaced by the third. This situation is equal to the fourth, which is the shear
experiment for 90°. Both for steel and aluminium the values for 0° and 90° are equal

up to 0.01. This is within the limits of the accuracy (appendix H). In the rest of this
dissertation the average value of 0° and 90° is taken for the shear factor for 0° and

90°.



Bi-axial test equipment

108108

Sample 1 2 3 4 5 Average Max. abs.
deviation

Angle RD
0 0.532 0.532 0.537 0.537 0.529 0.533 0.004
45 (1) 0.570 0.574 0.577 0.567 0.570 0.5716 0.005
45 (2) 0.573 0.567 0.584 0.567 0.567 0.5716 0.012
90 0.523 0.524 0.524 0.525 0.528 0.524 0.004

Table 5-6 Shear factors of steel sheet (AKS)

Angle RD
0 0.602
45 (1) 0.573
45(2) 0.582
90 0.591

Table 5-7 Shear factors of aluminium sheet (AA 5182)

Figure 5-19 Shear experiment for 0° and 90°
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The samples of a shear experiment are illustrated together with the fitted hardening
function in figure 5-20.

Figure 5-20 Measured data and fitted function model of the shear experiment

The shear strain range used for the fit is the area between the vertical dotted lines. It
can be observed that the shape of the fitted hardening function deviates from the
measured data. This is due to the fact that only the shear factor is fitted. The shape
also depends on the physically based hardening data, which are supplied by Corus
RD&T.

5.4.2 Plane strain factor determination

Proportional plane strain experiments were carried out on the same test pieces as in
the shear experiments for sheet steel (AKS) and aluminium (AA 5182). The steel
experiments were performed 5 times for each direction. The aluminium experiments
were performed 1 time for each direction. The experiments were carried out under
the following conditions:

Vertical clamp displacement: 1.5 mm
Time: 150 s
Vertical clamp velocity: 0.01 mm/s
Number of force samples: 250
Number of displacement samples: 250
Number of camera samples: 8.5 per second
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The plane strain factors are given in table 5-8 and table 5-9.

Sample 1 2 3 4 5 Average Max.abs.
deviation

Angle RD
0 1.245 1.245 1.238 1.239 1.234 1.240 0.006
45 1.242 1.249 1.236 1.247 1.241 1.243 0.007
90 1.240 1.250 1.247 1.256 1.257 1.25 0.01

Table 5-8 Plane strain factors for steel sheet (AKS)

Angle RD

0 1.086
45 1.118
90 1.114

Table 5-9 Plane strain factors of aluminium sheet (AA 5182)

The samples of a plane strain experiment are illustrated together with the fitted
hardening function in figure 5-21.

Figure 5-21 Measured data and fitted hardening function of the plane strain
experiment
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The plane strain range used in the fit is illustrated by the area between the vertical
dotted lines. It can be observed that the shape of the fitted hardening function
coincides fairly well with the measured data.

5.4.3 Vegter reference points for steel (AKS) and aluminium (AA 5182)

The shear and plane strain reference points for steel are determined by the shear
and plane strain factors respectively in sections 5.4.1 and 5.4.2. The uni-axial and
equi-bi-axial reference points for steel are supplied by Corus RD&T. The reference
points for aluminium are all taken from Corus RD&T, because the aluminium plane
strain and shear factors of sections 5.4.1 and 5.4.2 were obtained from only 1 test.
These results do not differ much from the results of Corus, but it is preferable to base
reliable factors on more tests. The material parameters are summarised in tables 5-
10 to 5-15. The yield surfaces of steel and aluminium are illustrated in figures 5-22 to
5-27.
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0° 45° 90°

fsh 0.5285 0.5716 0.5285

fun 0.916 1.079 0.927

fps 1.24 1.243 1.25

fbi 1.149 1.149 1.149

R 2.04 1.27 2.19

)ps 0.5 0.5 0.5

gradient

equi-bi-axial

-1.01 -1.00 -0.99

Table 5-10 Vegter function data for steel

!y (N/mm
2
) C n

184.8 539 0.202

Table 5-11 Nadai-Ludwik hardening data for steel

!0 #!m * + n $0 !0dyn m

146.8 218.5 0.462 7.753 0.75 0.005 591.1 2.2

Table 5-12 Physically based hardening data for steel

0° 45° 90°

fsh 0.596 0.579 0.556

fun 0.992 1.008 0.992

fps 1.081 1.071 1.054

fbi 1.026 1.026 1.026

R 0.73 0.79 0.67

)ps 0.5 0.5 0.5

gradient

equi-bi-axial

-1.00 -1.00 -1.00

Table 5-13 Vegter function data for aluminium

!y (N/mm
2
) C n

128.0 531 0.226

Table 5-14 Nadai-Ludwik hardening data for aluminium

!0 #!m * + n $0 !0dyn m

125.5 261.8 0.10 6.31 0.75 - 0.0 -

Table 5-15 Physically based hardening data for aluminium
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Figure 5-22 Quarter of Hill yield surfaces for 0°,45° and 90° (steel)

Figure 5-23 Quarter of Vegter yield surfaces for 0°,45° and 90° (steel)
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Figure 5-24 Average Vegter and Hill yield surfaces (steel)
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Figure 5-25 Quarter of Hill yield surfaces for 0°,45° and 90° (aluminium)

Figure 5-26 Quarter of Vegter yield surfaces for 0°,45° and 90° (aluminium)

0°

90°

1.0

!
1=-

!
2

!
1=
!
2

!
1/
!
y

!
2/
!
y

1.0

45°

0°

90°

1.0

!
1=-

!
2

!
1=
!
2

!
1/
!
y

!
2/
!
y

1.0

45°



Bi-axial test equipment

116116

Figure 5-27 Average Vegter and Hill yield surfaces (aluminium)
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5.5 Experimental determination of anisotropic hardening parameter

The bi-axial test equipment can be used to determine the anisotropic hardening
parameter (q) by carrying out a cyclic deformation test. Due to insufficient clamping
the test piece buckles during plane strain compression tests, hence the test case was
carried out by a cyclic shear experiment. The anisotropic hardening function is given
by (chapter 4):

5. 18

Relation (5. 15) is expressed in shear terms:

5. 19

The shear hardening rate in the shear stress - strain curve is defined by:

5. 20

Here (fshear) is the shear hardening rate, (fshear,iso) is the isotropic shear hardening rate
and (fshear,ini) the initial shear hardening rate at reverse loading. The parameter fsh is
the shear factor, which is determined from the proportional experiments of the former
section. The anisotropic hardening parameter (q) can be obtained by fitting the
hardening definition 5. 20 on the experimental hardening curve.

Cyclic experiments were carried out with test pieces cut out at 0°,45° and 90° to the

rolling direction of steel sheet (AKS) and aluminium sheet (AA 5182). The clamp
displacement reverses 5 times. Results of the fit are given in tables 5-10 and 5-11.
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After the fitting procedure the experiment was simulated with both the isotropic and
anisotropic hardening functions. The isotropic part was described by the Nadai-
Ludwik function and the average anisotropic parameter (q) was used.

Angle q

0
0.20

45
0.10

90
0.13

Average
0.14

Table 5-10 Anisotropic hardening parameters for steel sheet

Angle q

0
0.39

45
0.37

90
0.50

Average
0.41

Table 5-11 Anisotropic hardening parameters for aluminium sheet

Figures 5-28 to 5-31 show the experimental data from a cyclic test for 0° together

with the results of the simulations. It can be observed that the anisotropic hardening
rule gives better results in the beginning of the first reverse stage and at the first
reverse loading stage. At the end of the first reverse loading path also the isotropic
hardening model gives a satisfactory result.
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Figure 5-28 Comparison of anisotropic hardening based simulation (dotted
line) with experimental results (solid line) for steel sheet

Figure 5-29 Comparison of isotropic hardening based simulation (dotted line)
with experimental results (solid line) for steel sheet
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Figure 5-30 Comparison of anisotropic hardening based simulation (dotted
line) with experimental results (solid line) for aluminium sheet

Figure 5-31 Comparison of isotropic hardening based simulation (dotted line)
with experimental results (solid line) for aluminium sheet
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5.6 Examination of non-proportional deformation paths

The material model of chapters 3 and 4 is examined in non-proportional deformations
on shear experiments after 3%, 7% and 13% plane strain pre-deformation on steel
sheet. The procedure of examining the material model is set up as follows. The shear
factors for different planar angles are determined from the proportional experiments
of section 5.4. Then the parameter (q) for the anisotropic hardening model is
determined by the fit of the cyclic loading – reverse loading test of the former section.
Subsequently the experiments are simulated with the Vegter yield function combined
with both the isotropic physically based hardening model and the anisotropic
hardening function. After this the simulations are compared with the experiments.

The stress-strain curves of the experiments and simulations are given by figures 5-32
and 5-33. Figure 5-32 shows the simulations with the isotropic hardening function
and figure 5-33 the simulations with the anisotropic hardening function. By a
comparison of experimental data and the isotropic hardening function the following
conclusions can be drawn:

• A higher plane strain pre-deformation gives a larger initial shear yield stress.

This is fairly well predicted by the isotropic hardening function.
• At the start a small ‘bubble’ is present in the shear stress-shear strain curve.

First the hardening behaviour is larger than the isotropic hardening behaviour,
then the hardening becomes smaller. After a certain maximum in the curve
softening occurs. This phenomenon becomes more apparent when the pre-
deformation is larger. The isotropic hardening function cannot predict this
behaviour.

• As the shear test proceeds, the hardening rate tends towards the isotropic

hardening rate.

Figure 5-33 shows the result of a simulation with the new anisotropic hardening
relation for a non proportional test with 13 % plane strain pre deformation. It can be
concluded that the anisotropic hardening model gives worse results in this non-
proportional deformation path than the isotropic hardening model. The anisotropic
hardening model has been adapted especially for a continuous hardening behaviour
in non–proportional deformation paths in section 4.2.4. This adaptation does not
provide a good basis to describe the real behaviour. A more sophisticated approach
should be investigated in the future.
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Figure 5-32 Comparison of isotropic hardening based simulations (solid line)
with experiments (dotted line) of shear tests after 3, 7 and 13 % plane strain
deformation
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Figure 5-33 Comparison of anisotropic based hardening simulation with
experimental results

5.7 Conclusions

The bi-axial equipment can be conveniently used to investigate a large variety of
deformation paths. In this dissertation the equipment is used to determine the shear
and plane strain reference points of the Vegter yield function. Cyclic shear
experiments were carried out to determine the anisotropic hardening parameter (q)
and a start was made with non-proportional experiments. In order to make the best
possible use of the equipment, it has to be improved to impose a plane strain
compression deformation.
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6 Validation

To validate the material model 3 test cases are investigated. Each test is both carried
out experimentally and simulated using the new material model. The new model is
based on experimental data from the bi-axial test equipment and data from Corus
RD&T, see also the data of tables 5-10 to 5-15. The first test case is a plane strain
bending test which is carried out in co-operation with the University of Eindhoven
(TUE). This test is a validation of the plane strain point determination and the
performance of the Vegter yield function. The second test is the deep drawing of a
cylindrical cup. This test is carried out in co-operation with Corus RD&T. It validates
the performance of the Vegter yield function mainly on the earing behaviour. The
third case is the deep drawing of a trapezium-shaped product. Here the material
model is validated on the strain distribution of a critical product. In each validation
case the performance of the Vegter function is compared with the Hill’48 function,
which has been widely used in finite element codes. The Vegter and Hill yield
functions display significantly different yield stresses in the plane strain and equi-bi-
axial regions of the yield surface for the tested materials, see figures 5-22 to 5-27.
Therefore improvements in the simulation results are expected when using the
Vegter yield function.

This chapter is mainly a validation of the Vegter yield function. In some cases the
yield function is used in combination with the Nadai-Ludwik hardening function and in
other cases with the physically based hardening function. No specific cases have yet
been investigated to validate the hardening function.

6.1 Bending test case

The plane strain bending test case is carried out in co-operation with the University of
Eindhoven (TUE). The finite element simulation and the data acquisition of the plane
strain reference point are carried out by the University of Twente and Corus RD&T.
The experimental part is carried out at the TUE. With the bending test a plane strain
deformation is imposed on the sheet metal. By comparing the simulations with the
experiments the performance of the Vegter yield function in the plane strain region of
the yield surface is validated.

The experimental set-up is shown in figure 6-1.
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Figure 6-1 Experimental set-up (Hoogenboom, 1993)

The details of the experiment can be found in (Hoogenboom, 1993). In brief the
experiment is carried out as follows. Use is made of four rolls with equal diameters
(Figure 6-1). The rolls (A) and (D) are free to rotate but are prescribed in the
translation direction. The rotation of rolls (B) and (C) are related to the translation of
rolls (A) and (D) by steel tapes. The influence of the friction between the steel tapes
and the rolls is neglected, which means that a pure bending moment is applied to the
rolls (B) and (C). A test piece is clamped to rolls (B) and (C). Consequently the test
piece is loaded in pure bending.

The large relative width of the sheet ensures a plane strain state in the sheet.
The upper part of the sheet is loaded in a plane strain compression and the lower
part in tension. In the zones near the clamps and at the free edges the deformation
will differ from pure bending. A correction for these effects is made by a finite element
simulation, already in use at the TUE (Hoogenboom, 1993).

The experiment is carried out with both steel (AKS) and aluminium (AA 5182)
for different angles (0, 45 and 90°) to the rolling direction. These are the same

materials as used in the bi-axial test equipment in chapter 5. The sheet is bent once
till a radius of curvature of 2.0 mm is reached. For steel sheet this implies strains
ranging from 0 inside the sheet to 18 % at the surface and for aluminium strains from
0 to 25 %. These values coincide fairly well with the imposed deformation in the bi-
axial test equipment of chapter 5 (values from 0 to 18%).

With the current experimental set-up only 1 bending direction is possible. In
the future also cyclic bending experiments are intended. For these experiments a
new set-up is being prepared at the TUE.
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The simulations are carried out with the model in figure 6-2. The model consists of
400 elements and represents half of the deformation area of the sheet in the
experiment. If no edge effects are observed in the simulations, no elements need to
be modeled across the width of the sheet because no deformation takes place in this
direction. However, the model is also set up to investigate edge effects during a
cyclic experiment in the future, which also requires the elements across the width.
The number of integration points across the thickness is set to 7, which is the
maximum available in the finite element code used.

The right-hand edge is prescribed a rotation and the other side is suppressed
in all directions. The nodes at all the edges are suppressed in the width direction. The
material is modelled with both the Vegter and the Hill‘48 yield functions in
combination with the Nadai-Ludwik hardening function. The material parameters are
the same as in the experiments with the bi-axial test equipment, see tables 5-10 to
5-15.

Figure 6-2 Bending simulation set-up

The results of the experiments and the simulations are illustrated in figures 6-3 to 6-8.
The figures show the normalised bending moment (M/b!t2) as a function of the

normalised curvature (t/") for each planar angle. Here (M) is the bending moment in

the sheet, (b) the width, (t) the thickness of the sheet and (") the curvature radius.

The simulation results are discussed separately for steel and aluminium.

#

deformed

undeformed



Validation

128128

6.1.1 Steel simulations

For each planar angle 6 bending experiments were performed. The plane strain
factors in the simulations for steel are based on 5 experiments. The average
experimental data and the simulation results with the average plane strain factor are
represented in figures 6-3 to 6-5. Figures 6-6 to 6-8 illustrate the spread in
experimental data together with the possible spread in simulation results. This spread
in simulations is based on the maximum and minimum measured plane strain factors
of table 5-8.

The Vegter results show a fair agreement with the experimental data. Each
simulation result with the Hill ‘48 yield function shows a larger bending moment as a
function of the curvature, which can be attributed to the larger plane strain yield
stress, see also figures 5-22 and 5-23.

However, the simulations with the Vegter yield function start with a larger
bending moment and end with a smaller moment compared to the experiments. The
larger moment at the start can partly be attributed to the fact that the elastic
deformation is larger than the exact deformation. This is explained by the situation of
the integration points below the surface of the sheet metal (Carleer, 1996). Carleer
also discovered that an uneven number of integration points underestimates the
bending stiffness at higher deformations, which contributes to a lower moment-
curvature plot. However, the effects found by Carleer were not as large as the
differences in figures 6-3 to 6-5. Other reasons have to be found to explain the
differences.

A first reason for the difference is that the simulations assume identical material
behaviour under a compressive and a tensile load. The sheet then behaves
symmetrically across the whole thickness. It is suspected that in reality the material
shows different behaviour under tension and compression. This means that the sheet
is not symmetrically deformed, which affects the shape of the moment-curvature plot.
No research has been done within this dissertation on this effect. A plane strain
compression test with the bi-axial test equipment could reveal different behaviour
under compression compared to tension. However, this test cannot be performed
conveniently with the current test equipment. In the future the equipment should be
modified to carry out this test.

A second reason is the effect of the strain rate. The experiments are
performed within a time of about 60 seconds. This effectuates a strain rate that
influences the hardening behaviour significantly. The strain rate is not constant for
the height of the sheet, but increases towards the edges. When the change in
curvature is constant during the time of the experiment, the strain rate only affects the
height of the curve. Otherwise also the shape of the curve will be influenced.
Because the experimental course of the strain rate has not yet been investigated, the
simulations are performed without strain rate influence. For a proper validation the
experimental strain rate should be examined and taken into account in the
simulations in the future. Another option is filtering out the strain rate influence by
performing an experiment with a very low strain rate.
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Figure 6-3 Comparison of simulation results with experimental data, 0° (steel)

Figure 6-4 Comparison of simulation results with experimental data, 45° (steel)

Figure 6-5 Comparison of simulation results with experimental data, 90° (steel)
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Figure 6-7 Spread in experimental data together with with simulation results for
the maximum and minimum plane strain factor, 0° (steel)

Figure 6-8 Spread in experimental data together with with simulation results for
the maximum and minimum plane strain factor, 45° (steel)

Figure 6-9 Spread in experimental data together with with simulation results for
the maximum and minimum plane strain factor, 90° (steel)
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6.1.2 Aluminium simulations

For each planar angle 6 bending experiments were performed. Due to the small
number of plane strain experiments carried out on aluminium at the UT, the plane
strain factors were provided by Corus RD&T. The average experimental data and the
simulation results are represented in figures 6-10 to 6-12. The spread in experimental
data can be considered similar to the data of steel. The spread in plane strain factors
is not known.

With the aluminium simulations (figures 6-10 to 6-12) the difference between the
Vegter and the Hill yield functions become more clear. The simulation results of the
Vegter function coincide much better with the experiments than the results of the Hill
‘48 function. For 0° still a small difference is present but for 45° and 90° the moment-

curvature plots represent the experimental data almost exactly.
Each Hill ‘48 simulation shows a larger bending moment as a function of the

curvature. Similar to the simulations with steel this is attributed to the larger plane
strain yield stress. The advantage of aluminium compared to steel is that the strain
rate does not affect the hardening behaviour significantly, so this effect does not
have to be examined. Also here the simulations assume similar material behaviour in
tension and compression. Probably this assumption is reasonable with aluminium
sheet metal.

6.1.3 Conclusion

Due to the fact that the plane strain yield stress is an input parameter of the Vegter
yield locus, the yield surface shape differs significantly from the Hill yield surface in
the plane strain region (figures 5-22 to 5-27). The shape of the yield surfaces
explains directly the difference in the moment-curvature plots of a plane strain
bending test. The results for steel need more research for a proper validation, but first
results provide a fair impression. The results for aluminium are satisfying, considering
the good agreement between the experimental and simulation results.
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Figure 6-10 Comparison of simulation results with experimental data, 0° (Al)

Figure 6-11 Comparison of simulation results with experimental data, 45° (Al)

Figure 6-12 Comparison of simulation results with experimental data, 90° (Al)

(M/b·t2)

t/!

Hill

experiment
(average)

120

0.6

(M/b·t2)

t/!

Vegter

experiment
(average)

120

0.6

(M/b·t2)

t/!

Vegter

experiment
(average)

120

0.6

(M/b·t2)

t/!

Hill

experiment
(average)

120

0.6

(M/b·t2)

t/!

Vegter

experiment
(average)

120

0.6

(M/b·t2)

t/!

Hill

experiment
(average)

120

0.6



Validation

133133

6.2 Deep drawing of a cylindrical product

The deep drawing of a cylindrical product is carried out in co-operation with Corus
RD&T. The experiments and simulations are carried out at Corus. The data for the
Vegter function are supplied both by the UT and Corus. By comparing the simulation
results with experiments the performance of the Vegter yield function on a basic deep
drawn product is validated. A large effect of using different material models can be
observed in the earing profile, so this will be investigated first. Furthermore the
Vegter function will be validated with the strain distributions.

The experimental set-up is shown in figure 6-13.

Figure 6-13 Geometrical set-up

The experiment is carried out with both steel (AKS) and Aluminium (AA 5182). These
are the same materials as used in the bi-axial test equipment in chapter 5. The
process parameters are listed in table 6-1.

Process parameters

blank holder force [Kn] 20
friction coefficient 0.16
punch displacement [mm] 60

Table 6-1 Process parameters
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The simulations are carried out with the model in figure 6-14, which shows the
undeformed mesh. The model consists of 5250 elements and represents a quarter of
the sheet of the experiment. At the time the calculations were carried out, no
automatic refinement procedure was available in the used code. Therefore the
elements towards the edges are refined in advance to obtain a fine discretization of
the earing region.

Figure 6-14 Initial cup drawing mesh

The number of integration points across the thickness is set to 5 to obtain a
reasonable calculation time with an acceptable accuracy. The material is modelled
with both the Vegter and the Hill’48 yield functions. The material parameters are the
same as in the experiments with the bi-axial test equipment, see tables 5-10 to 5-15.

Figure 6-15 shows the final cup drawing mesh. First the earing profile is checked.
This earing profile can be defined by observing the height (h) of the cup as a function
of the angle ($), see figure 6-15. Subsequently the strain distributions on the thick

lines in the figure are examined. The thick line in direction (l0) coincides with the
angle $=0° and the line in direction (l45) coincides with the angle $=45°. The steel and

aluminium simulations will be discussed separately.
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Figure 6-15 Final cup drawing mesh

6.2.1 Steel simulations

The earing profiles are given by figure 6-16. The earing profile of the Vegter function
coincides better with the experimental data than the Hill’48 function. The Vegter
function shows less variation in the height of the cup. This can be explained by the
shape of the yield surfaces for different planar angles (figures 5-22 and 5-23).
Though both yield functions have the same R-values, the Vegter yield surfaces differ
less for different angles than the Hill’48 surfaces, which indicates less anisotropic
material behaviour.

Figure 6-16 Height of the cup (h) as a function of the angle ($) for steel
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Some care must be taken in the comparison of simulations with experiments. The
experimental blank holder force is not known exactly because it is related to the
hydraulic pressure, which is assumed constant. In reality the pressure can vary
during the process. Due to the grid applied on the sheet, the friction between the
tools and the die can have different values locally. This influences the results, which
is illustrated in figures 6-17 and 6-18. Nevertheless the results of the Vegter yield
function remain valid, considering that the blank holder force and the friction
influence mainly the overall cup height and not the earing of the cup.

Figure 6-17 Height of the cup (h) for different blank holder forces (BH)

Figure 6-18 Height of the cup (h) for different friction coefficients (µ)
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The first (=largest) principal strain as a function of the profile lengths (l0) and (l45) are
given in figures 6-19 and 6-20. Also here the Vegter function provides a more
realistic prediction of the strain distribution in the product. In the punch head area the
Vegter and Hill functions show the same strain distribution. This is explained by the
fact that the stress can be considered equi-bi-axial in this area. Because the equi-bi-
axial yield stresses of the Vegter and Hill functions of steel are almost equal (figure 5-
24), the strain distributions are also similar. In the cup wall area differences occur
between the yield functions. In this area the material has drawn in from the flange
into the cup wall. In the flange a shear deformation has occurred and in the cup wall
a plane strain deformation. Only the yield locus around the plane strain yield stress
differs between the two yield functions (figure 5-24), which explains the better
performance of the Vegter function in this area.

Figure 6-19 Principal strain (%1) as a function of the profile length (l0), steel

Figure 6-20 Principal strain (%1) as a function of the profile length (l45), steel
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6.2.2 Aluminium simulations

The earing profiles are given in figure 6-21. The earing profile of the Vegter function
coincides better with the experimental data than the Hill’48 function, but the
improvement is not as large as for steel. This can be explained by the shape of the
yield surfaces. For aluminium both the Vegter and the Hill’48 yield surfaces vary only
slightly for different planar angles (figures 5-25 and 5-26). This indicates a small
anisotropic behaviour, which is reflected by the small earing profile for both functions.
Nevertheless the Vegter function shows a small improvement.

Figure 6-21 Height of the cup (h) as a function of the angle ($) for aluminium

The first principal strain as a function of the profile lengths (l0) and (l45) are given in
figures 6-22 and 6-23. In the punch head area the Vegter prediction is more realistic,
which can be attributed to the equi-bi-axial yield stress value. The equi-bi-axial yield
stress for the Vegter function is larger than for the Hill function (figure 5-27), which
results in a smaller deformation. In the cup wall area also differences occur between
the yield functions, but here the differences are smaller than for steel. This is
consistent with the fact that the plane strain yield stress difference is smaller for
aluminium than for steel (figure 5-27).
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Figure 6-22 First principal strain (%1) as a function of the profile length (l0)

Figure 6-23 First principal strain (%1) as a function of the profile length (l45)

6.2.3 Conclusion

Due to the fact that the Vegter yield locus is based on bi-axial stress states, the yield
surface shape differs significantly from the Hill yield surface although the R-values
are the same, see figures 5-22 to 5-27. This results in more realistic results in the
deep drawing of a cylindrical cup.
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6.3 Deep drawing of a trapezium-shaped product

Experimental data on the deep drawing of a trapezium-shaped product is available
from tests carried out at TNO (Kevie, 1999). The product has been developed to
assess the formability of sheet metal. The test is simulated with the Vegter yield
function at Corus RD&T. The material used is the same aluminium, of chapter 5
(table 5-13). The simulation was carried out with a constant planar angle in the stress
remap procedure, because the procedure was not developed further at that time. It
implies that anisotropic behaviour is not incorporated entirely correctly, but since the
material is almost planar isotropic, the simulation is assumed to provide valuable
information.

Several experiments and simulations with different process conditions (blank
holder force, blank shape and punch displacement) were performed. It appears that
the most striking results are obtained in a critical case, i.e. with process conditions
such that the product can just be manufactured without failure of the material. In this
case the punch displacement is stopped at the moment the sheet breaks up. The
results of this critical case are discussed here.

Failure occurs when the strain distribution is above the forming limit curve
(FLC) in the principal strain space (%1-%2). The Vegter yield function is validated on

the Forming Limit Diagram (FLD) which shows the principal strain distribution
together with the FLC. The results of the Hill’48 yield function are given for a
comparison.

The experimental set-up of the drawing die is given in figure 6-24.

Figure 6-24 Geometrical set-up
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The process parameters are given in table 6-2.

Process parameters

blank holder force [kN] 5
friction coefficient 0.16
punch displacement [mm] 40.5

Table 6-2 Process parameters

The simulations are carried out with the model in figure 6-25, which shows the
modelled tool and deformed mesh. The model consists of 1085 elements and
represents the complete sheet. The number of integration points across the thickness
is set to 5. In the deformed mesh the experimentally observed corner of the sheet is
indicated by the thick line.

Figure 6-25 Simulation of trapezium-shaped product drawing

The strain distribution of the simulations and the experimental data of the
accentuated corner are represented in figures 6-26 and 6-27. As can be observed
the strain distributions are clearly different for the Hill’48 and the Vegter yield
function. The strain distribution of the Vegter function is close to the FLC and
compares better with the experimental data. The Hill function shows a strain
distribution which tends more to the equi-bi-axial state. The different strain
distributions can be explained by the yield surface shapes (figure 5-27). The equi-bi-
axial stress of the Hill function is smaller than the value of the Vegter function.
Therefore the simulation with the Hill function will show more deformation at the
bottom of the product, where the stress state tends towards equi-bi-axial. The Vegter
function will show more deformation in the wall, where the stress tends to the plane
strain state. As a consequence the Vegter function predicts a critical product and the
Hill function a non-critical product.

experimental
observed
corner
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Figure 6-26 Experimental and Hill simulated FLD compared with FLC

Figure 6-27 Experimental and Vegter simulated FLD compared with FLC

Nevertheless the experimental strain distribution is above the FLC, whereas the
strain distribution of the Vegter yield function is below the FLC. This is explained as
follows. In the experiment the exact punch displacement at failure is difficult to
determine, so it is possible that the punch is stopped just before or just after the
sheet breaks up. In the considered case the strain distribution is above the FLC,
hence it can be assumed that the punch is stopped after failure. The influence of the
extra punch displacement after failure is investigated by a simulation. The simulation
is carried out with the Vegter and the Hill yield functions with a punch displacement of
45.5 mm.
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Figure 6-28 shows the strain distribution of the simulations. The strain distribution of
the Hill yield function is still below the FLC and consequently a non-critical product is
predicted. The strain distribution of the Vegter yield function is clearly above the FLC
now, which indicates that the product has broken up.

Figure 6-28 Vegter and Hill simulated FLD at 45.5 mm punch displacement

It must be noted that, similar to the cup drawing simulations, the results can vary due
to variable process conditions. For instance the friction and the blank holder are not
known exactly from the experiments. The friction is increased by the grid that has
been applied to the sheet. The blank holder force is derived from the imposed
hydraulic pressure, but can vary during the process.

6.3.1 Conclusion

In the trapezium-shaped product the plane strain and equi-bi-axial yield stress play
an important role in the strain distribution under critical conditions. Because the
Vegter yield surface is more accurate in the plane strain and equi-bi-axial regions, it
provides a better prediction of the strain distribution.
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7 Applications

The material model is applied in 2 simulations of complicated deep draw products.
The first application is the deep drawing of a Volvo pedal box. The second
application is the deep drawing of an Audi front panel, which was a benchmark at the
Numisheet’99 conference.

7.1 Deep drawing of the Volvo pedal box

The deep drawing of the Volvo pedal box is carried out in cooperation with Corus
RD&T. Simulations are performed at the University of Twente and experiments are
carried out at Corus RD&T. From chapter 6 it appears that the influence of different
material models becomes mainly clear in critical cases. In these cases the process
conditions are chosen in such a way that the product can just be manufactured
without failure of the material. Corus already acquired some experience on deep
drawing the pedal box with zinc coated steel. It was expected that critical cases could
be obtained with steel (AKS) and aluminium (AA 5182) after some minor
modifications on the process conditions.

Initially simulations were carried out to determine the critical process
conditions. The blank shape and blank holder force were tuned until a product
without defects was simulated with a strain distribution just below the FLC.
Subsequently experiments were performed with the same process conditions as in
the simulations. It appeared that at one side the material failed and at the other side
severe wrinkling occurred, so the simulations deviated a lot from the experiments. A
closer look at the tool geometry revealed that an important part of the punch and die
was not modeled, so this was probably the reason for the bad prediction of the
simulations. Thanks to the large experience at Corus RD&T, the process conditions
were easily adjusted by trial and error to obtain a satisfying product which was just
critical.

Corus supplied new geometrical data of the punch and the die and
subsequently simulations were carried out with the new tool data. The results of
these simulations are compared with experiments.
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The experimental set-up is given by figure 7-1. The upper part represents the side
and front dimensions of the die and the lower part the top dimensions.

Figure 7-1 experimental set-up

A critical pedal box is realized by changing the blank shape, altering the friction
between the tools and the sheet and varying the blank holder force by trial and error.
On the outer side of the sheet a 2.5 mm grid is etched on half of the front side of the
blank. After deep drawing this grid is measured by a 3D-measurement device Phast
(Corus RD&T 2001), to obtain the strain distribution of this part of the product. To
protect the grid during contact between the tools and the sheet, plastic foil is layed
over the sheet. It is estimated that the friction coefficient of the foil equals 0.05, so on
the outer side the friction is fixed to this value. The friction on the inner side of the
sheet can be controlled by applying a lubricant or applying a foil.

The critical process conditions for steel and aluminium sheet are given by
figure 7-2 and 7-3. The adaptations from the initial zinc coated blank shape are
represented by the thick black lines. To obtain a critical steel product, the blank is
elongated at the front side and trimmed at the back side. The oblique side at the back
is shifted 4 mm towards the middle and two triangular (shaded) parts are cut of. A
foil is used on the outer side and lubrication on the inner side. In order to obtain a
critical aluminium product, the blank needs less adaptations compared to the initial
shape. Only 4 mm shift of the oblique side and cutting of the shaded parts are
necessary. In this case on both sides a plastic foil is applied.

side dimensions front dimensions

top dimensions
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Blankholder force

400kN

Friction conditions

Outer side: foil (µ=0.05)

Inner side : lubrication (µ=0.16)

Figure 7-2 Critical pedal box process conditions and steel blank geometry

Blankholder force

325kN

Friction conditions

Outer side: foil (µ=0.05)

Inner side : foil (µ=0.05)

Figure 7-3 Critical pedal box process conditions and aluminium blank

It is worth noticing that the tools have been used in the actual production process and
wear due to the use in production can be observed. For instance, when one touches
the tools by hand, it can be felt clearly that the initial blank edges have been pressed
in the tools. So the die and blank holder are not completely flat and consequently the
process conditions are not defined exactly. For instance, when the blank shape is
changed and the blank reaches beyond the initial edges, the blank holder force will
not be uniform. So the experimental data must be interpreted with care.

The simulation set-up is shown in figure 7-4. The die is constructed from the 3D
measurement of the outer side of a deep drawn product, represented by the black
surface in figure 7-4. The fine mesh of this surface represents the measured product
and the course regular mesh is added to obtain a complete die. Hence the die does
not represent reality completely but it can be considered a good approximation. The
punch is constructed by an offset of 1.2 mm normal to the die surface, represented
by the green surface. The red surface represents the blank holder.
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Figure 7-4 Simulation set-up

The simulations are carried out with a refinement procedure (Meinders, 2000). A
sheet element is refined when a thickness error or a geometrical error is reached.
The thickness error is calculated by the ratio of the actual integration point thickness
in the considered element and the average thickness of surrounding elements. The
geometrical error is determined by the angle between the considered element and
the surrounding elements. In combination with elasto-plastic material numerical
problems occurred when an element was refined more than 1 time, so only 1 element
refinement is allowed. The results are discussed separately for steel and aluminium.

7.1.1 Steel simulations

The simulated product shape with the first principal strain distribution is given in
figure 7-5. Compared to figure 7-4, the product geometry is shown upside down in
order to show the spot with the largest strain.
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Figure 7-5 Simulated deformation with first principal strain distribution (steel)

The first and second principal strains are given by the FLD in figure 7-7. It can be
observed that the strain distribution is very close to the FLC, which indicates a critical
product. The strains closest to the FLC tend towards pure shear, but the maximum
first principal strain (!0.6) is slightly larger than the maximum absolute value of the

second principal strain (!0.4). This corresponds to the strain distribution of figure 7-5.

The spot with the maximum first principal strain is situated in the wall of the pedal
box. Here most of the deformation has taken place in the blank holder region (shear
deformation) and a small amount of deformation in the wall (plane strain
deformation).

The experimental first principal strain distribution of the corner is given in figure 7-6.
The FLD of this part is given in figure 7-8. The experimental strain distribution
deviates from the simulated strain distribution. The maximum first principal strain of
the experiment is about 0.25 larger and the minimum second principal strain is 0.25
less so the difference can be considered an extra shear deformation. This can be
explained by the fact that the experiment is just over critical. The exact process
settings at failure of the material are difficult to determine. This is inherent to the
tools, which are not perfect due to wear during the production process. Furthermore
the friction is influenced locally by the foil, which breaks up at certain places. So the
process conditions can deviate from the intended settings and the deformation can
reach the FLC earlier than expected. When the material is deformed further after
reaching the FLC, shear bands show up which effectuate an extra shear deformation.
In fact these shear bands are observed by the human eye with some effort by looking
from a certain angle at the corner of the product.

0.0

0.65
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0.85

Figure 7-6 Corner with experimental first principal strain distribution (steel)

From the trapezium shaped validation case (section 6.3) it is known that an over
critical situation can be simulated by adjusting the process conditions in the
simulation slightly. In that case the used finite element code does not predict the
shear bands, but shows a larger plane strain deformation in the wall. So the strain
distribution still differs from the experimental distribution and consequently this
distribution is not shown.

The simulation is also carried out with the Hill yield function. The strain distribution of
this simulation is shown in figure 7-9. It appears that the Hill strain distribution is less
critical than the distribution of the Vegter function but still the Hill function predicts a
critical product fairly well. This indicates that the shape of the product is not
influenced much by the material model but mainly geometrically determined.

0.0
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Figure 7-7 Vegter simulated FLD compared with FLC (steel)

Figure 7-8 Experimental FLD compared with FLC (steel)
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Figure 7-9 Hill simulated FLD compared with FLC (steel)

7.1.2 Aluminium simulations

The simulated product shape with the first principal strain distribution is given in
figure 7-10.

Figure 7-10 Simulated deformation with first principal strain
distribution (aluminium)
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The first and second principal strains are given by the FLD in figure 7-12. This strain
distribution is very close to the FLC, which indicates a critical product. The strains
closest to the FLC are almost pure shear. The maximum first principal strain (!0.4)

can be considered equal to the maximum absolute value of the second principal
strain (!0.4). This corresponds to the strain distribution of figure 7-10. The spot with

the maximum first principal strain is situated just in the wall of the pedal box corner.
Here almost all of the deformation has taken place in the blank holder region (shear
deformation) and very little deformation in the wall (plane strain deformation). When
the blank shape is compared with the steel blank, it is evident that the material
deforms relatively more in shear. The blank has less material under the blank holder
compared to the steel blank. As a consequence the material will deform easier under
the blank holder.

The experimental first principal strain distribution of the corner of the product is given
in figure 7-11. The FLD of this part is given in figure 7-13.

Figure 7-11 Corner with experimental first principal strain distribution
(aluminium)
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The experimental strain distribution deviates from the simulated strain distribution.
The maximum first principal strain is about 0.20 larger and the minimum second
principal strain is 0.10 smaller. Also the strains in the plane strain region are larger
than in the simulation. So in this case no extra shear deformation due to shear bands
is measured, compared to the simulated results. In fact these shear bands can not be
observed, because some wrinkles occur in the area with the largest strains. These
wrinkles are recorded with a photo-camera at the inner side of the pedal box, see
figure 7-14. Also under the blank holder wrinkles are observed. The wrinkles can
have a significant influence on the deformation distribution in the product. Locally the
blank holder pressure will be larger, which effectuates a larger plane strain
deformation in the wall and more critical strains than predicted by the simulations.
When the wrinkles are smaller than the grid distance, the wrinkles can also distort the
Phast measurements, which can be an additional reason that no extra shear
deformation is observed in the strain distribution compared to the simulations.
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Figure 7-12 Vegter simulated FLD compared with FLC (aluminium)

Figure 7-13 Experimental FLD compared with FLC (aluminium)

Because only one element refinement was allowed in the finite element model, the
wrinkles are not observed in the simulation. One extra simulation with more
refinements reveals that the geometry can be described better. The deformed
geometry of this simulation is illustrated in figure 7-15 together with the first principal
curvature. The result is shown with the inner side upward to show the wrinkles in the
sheet. A visual comparison with the experiments reveals that the wrinkles in the
sheet are described fairly accurate and that also in the corner wrinkles occur.
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Figure 7-14 Wrinkles in the aluminium pedal box

Figure 7-15 Deformed aluminium sheet with first principal curvature
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7.1.3 Conclusions

The simulations predict a critical product at the same process conditions as in the
experiment. However, the simulated strain distribution deviates from the experimental
distribution for both steel and aluminium. Due to not perfect tools the process
conditions are not defined well and consequently the product is over critical in the
experiments. When steel is used as blank material, the deviating strain distribution
can be explained by the occurrence of shear bands. When aluminium is used,
wrinkles are observed in the wall and the blank holder region, which are not found in
the simulations. These wrinkles cause more critical strains than predicted by the
simulations.
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7.2 Deep drawing of the Audi front door panel

The forming process of the Audi front door panel was a benchmark at the Numisheet
’99 conference (Numisheet, 1999). The complete forming process of the panel
includes deep drawing, cutting, flanging and spring back. This section focuses on the
deep drawing part. This part is simulated with the finite element program Dieka,
developed at the University of Twente. The deep drawing part of Dieka is mainly
used as development code in cooperative projects with Corus RD&T.

The tool geometry is illustrated in figures 7-17 to 7-20. Draw beads are used to
control the material flow under the blank holder. The simulation set-up is shown in
figure 7-21. Significant differences with the pedal box simulation are the draw beads
and the curved blank holder. The blank holder gives numerical instabilities when it is
closed, illustrated by figure 7-16. At initial contact the blank holder generates a force
on the sheet in vertical direction (FY) and horizontal direction (FX). The vertical force
is resisted by the forces (FY*) and (FY**) of the die. The horizontal force is not
resisted initially and results in a translation of the sheet out of the die region. In reality
also this force exists, but the mass of the sheet restricts it from moving. Meinders
(Meinders, 2001) has incorporated mass terms in Dieka, which appear to be
stabilizing.

Figure 7-16 Horizontal force on the sheet at initial contact of the blank holder

The focus was at running a stabilized simulation with mass terms in combination with
the new material model. Therefore the draw beads are left out and the blank shape is
chosen simple. So the results can not be interpreted quantitatively but should be
considered an illustration of the performance of Dieka at this moment. An extensive
explanation of the simulations with the incorporation of refinement procedure and
mass terms is given in (Meinders, 2001).
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The simulated product shape with the thickness distribution is illustrated in figure 7-
22. The required computation time for the simulation with the Vegter yield function
equals 8 hours and 53 minutes on a HPJ5600 system. The simulation with the Hill
yield function requires 10 hours and 25 minutes. So, although the Vegter function is a
more advanced yield function, it requires less compution time. This indicates an
efficient implementation in the finite element code Dieka.

7.3 Conclusions

The new material model is used in a deep draw simulation of a realistic automotive
product. Compared to the Hill yield function, the Vegter yield function needs less
calculation time, which indicates an efficient implementation. It can be concluded that
the new material model can be used conveniently in real deep draw simulations.



Applications

160160

Figure 7-17 Die geometry Figure 7-18 Blank holder geometry

Figure 7-19 Punch geometry Figure 7-20 Initial blank

Audi benchmark (Numisheet 1999)
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Figure 7-21 Simulation set-up

Figure 7-22 Deformed product shape with thickness distribution
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Conclusions and recommendations 
 
 
The Vegter yield function is implemented properly in a finite element code. The stress 
update procedure turns out difficult due to the definition in principal stresses, but a 
special numerical Euler backward scheme solves the difficulties. Also the possibility 
of defining the Vegter yield function directly in general stresses is investigated but 
further research is necessary to reveal the viability of this definition. The current yield 
function assumes 4 earing behaviour in deep drawing a cylindrical product, it should 
be extended to incorporate multiple earing behaviour. In deep draw validation cases 
the Vegter function provides significant better results than common anisotropic yield 
criteria. It can be applied conveniently to simulate the forming process of complex 
deep draw products. 
 
The yield function is extended with two hardening models, a physically based 
isotropic hardening model and an anisotropic hardening model. The models are 
validated by cyclic and non-proportional experiments. A cyclic deformation pattern 
can be simulated properly but the material behaviour in a non-proportional 
deformation path is not simulated in a realistic way yet, hence more research is 
needed in this area.  
 
A bi-axial test equipment is developed to obtain the data for the new material 
description. The test equipment is able to investigate a large variety of stress and 
deformation states. The current set-up is considered a prototype and can be 
improved with respect to steering and control of the (tensile) deformation and the 
optical strain measurement at large deformations. The horizontal movement of the 
equipment is performed with a Galil drive unit and the vertical movement is 
performed with a Zwick tensile tester. The horizontal movement is much more 
accurate (table 5-1) than the vertical movement, hence it is recommended that the 
Zwick equipment is also replaced by a Galil drive unit. The accuracy of the strain 
measurements is investigated roughly by the definition of a spread in the data and 
needs also a more thorough approach. The equipment uses a deformation analysis 
system which is based on the recognition of objects on the sheet metal. These 
objects exist of elastic sylicon kit and are placed on the sheet metal by hand. A more 
uniform and less time consuming method is preferred. 

In the scope of this research the equipment is used to determine the plane 
strain and shear reference points of the Vegter yield function and the anisotropic 
hardening parameter. The equipment can be used appropriately for these purposes. 
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Appendix A Normal on the yield surface 
 
This appendix elaborates the normal on the yield surface in the principal stress space 
σ1-σ2. This means that the derivative of the yield function to principal stresses is 
determined, which can be written as the derivative of the equivalent stress to the 
principal stresses: 

 
 

( 1) 
 
 
 

The change of the planar angle is handled separately (appendix C). In ( 1) the planar 
angle θ is considered constant, so the derivatives with respect to this angle are zero.  
 
The starting point for the normal is equation (3.14): 
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From these equations follows: 
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By substituting ( 5) in the first of ( 4) and substituting ( 2) in ( 1), the first component 
of the normal is obtained: 
 

 
( 6) 

 
 

By interchanging the indices of the first and the second components the second 
component of the normal is also derived: 
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Appendix B Euler backward stress projection 
 
The expression for the Euler-backward method for a plane stress situation is given 
by: 
 
 
 
 
 
 
 
 
 

 
 
 
 
( 1) 

Here the derivatives of the yield function to the stress components are written as: 
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The derivatives of the first principal stress to the general stress components are 
determined using the rules of tensor transformation (3.9): 
 
 
 
 
 
 
 
 
 
or 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
( 4) 

In a similar way the derivatives of the second principal stress to the stress 
components are: 
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The derivatives of the term cos2θ to the stress components are determined are 
determined using the rules of tensor transformation (3.9): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with 
 
 
 
 

 
 
 
( 7) 
 
 
 
 
 
 
 
( 8) 
 
 
 
 
 
 
( 9) 
 
 
 
( 10) 

 

( )
cos2

2

2

2
2

!

" "

" "
#

=

$

$%

&
'

(

)
* +

xx yy

xx yy

xy

 

( ) ( ) ( )

( )

! "

!# # #
$

# #

# #
$

# #
$

# #

cos2

1

2

2

1

2 2

2 2

1

2
2

2

2
2

2
2

2

3

xx
xx yy

xy

xx yy

xx yy

xy

xx yy

xy

xx yy

diamohr diamohr

=
%&

'
(

)

*
+ +

%

%&

'
(

)

*
+

%&

'
(

)

*
+ +

&

'

(
(

)

*

+
+ ,

%&

'
(

)

*
+ +

=

%
%

 

( )! "

!#

# #cos2 1

2

3
yy

xx yy

diamohr diamohr
= $ $

$
%

&

'
'
'

(

)

*
*
*

 

( )! "

!#

# $ $cos2 4

3
xy

xy xx yy

diamohr
= %

& %
 

( )diamohr
xx yy

xy=
!"

#
$

%

&
' +2

2

2
2

*

( (
)  



 170 

The expressions ( 3) to ( 10) can be substituted into ( 2). Then expression ( 2) can be 
substituted back into ( 1). Because ( 6) is very extensive, this  latter will not be 
substituted into ( 2) yet: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
( 11) 

 
Expression ( 11) is the general expression for the Euler backward method for the 
Vegter yield function. Because the last angle-dependent term between brackets in ( 
11) is very extensive and appears to have only a small contribution compared to the 
other terms, it was decided to leave this term out in the first instance. This derivation 
is known as the Euler backward method with a constant planar angle. It is elaborated 
in the first part of  this appendix. It appeared however, that, despite its small 
contribution,  leaving out this term showed significant difference in anisotropic effects. 
For instance the shear behaviour in an uni-axial tensile test of section 3.5 was not 
present at all. Therefore the Euler backward is also derived including the latter term. 
 
Euler backward method with a constant planar angle 
 
The basis is expression ( 11) without the last term: 
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By taking the stress terms with subscript ‘n’ to one side: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
( 13) 

 Expression ( 12) can be simplified by defining the matrix A(µ,Δλ): 
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Then equation ( 12) changes into : 
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Parts 1 and  2 of equation ( 15) are written out separately. For this the inverted matrix 
A(µ,Δλ)-1 is written as: 
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where 
 
 
 
 
 

 
 
 
 
( 16) 

The first part of  ( 15) then gives: 
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By adding the first ( 17) and the  second ( 18) parts equation ( 15) becomes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
( 19) 

Because the back-scaled situation is on the yield surface, another 2 equations apply: 
 
 
 
 
 
 
 

 
 
 
( 20) 

These equations can be written in general stress components as: 
 
 
 
 
 
 
 
 

 
 
 
( 21) 

Adding and substracting equations ( 20) results in: 
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When equations ( 19) are substituted into ( 22): 
  
 
 
 
 
 
 
 
 
 
 
Or simplified: 
 
 
 
 
 
 
 
 
 
This gives an expression for Δλ: 
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( 25) 
 
 
 
 
 
 
 
 
 
 
( 26) 
 

 
Substitution of equations ( 19) into ( 23) results in: 
 
 
 
 
 
 
 
 
 
 
 
 
By substituting the expression for (a) into ( 27): 

 
 
 
 
 
( 27) 
 
 
 
 
 
 
 

 

vv

n

n

n

n

tyytxxtyytxx

ff

v

E
v

f
f

f
f

ff

v

E
v

f
f

f
f

ff

a

a

a

a

a

a

a

a

!"µ!"µ

"µ
#µ

"µ#
"µ

#µ

"µ#

#µ

"µ#

#µ

"µ#
$

"µ
#µ

"µ#
"µ

#µ

"µ#

#µ

"µ#

#µ

"µ#
$

!!!!

%+%

=

&
+

''
(

)
**
+

,
&

''
(

)
**
+

,
&-

&
&

+

''
(

)
**
+

,
&

''
(

)
**
+

,
&-

&

%
+

+
+%

+
+%

+
+%

+

+

),(2),(1

1
)1(

2

1

),(2
),(1

),(1
),(2

),(1),(2

1
)1(

2

1

),(2
),(1

),(1
),(2

),(1),(2

12

1

121212

1

22

 

vv

t
nxy

tyytxxtyytxx

ff

a

a

a

a

a

a

a

a

a

!"µ!"µ

#

!!!!

$%$=

&
'

(
)
*

+

+

+

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

*

+

%

+

+
%

+
%

+
+

+

+

),(2),(1

12

1

2

12

1

121212

1

2

2

2

 

vv

n

n

tyytxx

ff

v

E
v

f
f

f
f

ff

!"µ!"µ

"µ
#µ

"µ#
"µ

#µ

"µ#

#µ

"µ#

#µ

"µ#
$

!!

%+%

=

&
+

''
(

)
**
+

,
&

''
(

)
**
+

,
&-

&+

),(2),(1

1
)1(

),(2
),(1

),(1
),(2

),(1),(2

2

 

n

n

vvtyytxx

f
f

f
f

ff

v

E

ff

!!
"

#
$$
%

&
'

!!
"

#
$$
%

&
'

!
"

#
$
%

&

'

(+('+
=)

),(2
),(1

),(1
),(2

),(1),(2

1

),(2),(1

*µ
+µ

*µ+
*µ

+µ

*µ+

+µ

*µ+

+µ

*µ+

,*µ,*µ,,
-

 



 175 

 
 
 
 
 
 
 
 
 

 
 
 
( 28) 
 

 
 
By substituting the expression for Δλ ( 26) into the right-hand side of ( 28): 
 
 
 
 
 
 
 
 
With ( 29) an equation for µ is  obtained in which µ is the only unknown parameter, 
which can be solved with a Newton-Raphson method. This method is stable when 
the first guess of µ is close enough to the end solution. Therefore first a Bisection 
method is applied until an accuracy of 10 % in µ is reached before the Newton –
Raphson method is used to compute the end solution. Subsequently the solution 
for µ can be substituted into ( 26), which provides the value of Δλ. By substituting 
µ and Δλ in ( 14) and subsequently ( 14) in ( 15), the back-scaled stress σn is 
obtained. 
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Euler backward method with changing planar angle 
 
The basis is expression ( 11). By taking the stress terms with subscript ‘n’ to one 
side: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
( 30) 

  
Expression ( 30) can be simplified by defining the matrix A(µ,Δλ), see ( 14). Then 
equation ( 30) changes into: 
 
 
 
 
 
 
 
 

 
 
 
( 31) 

Like the derivation with a constant planar angle, the parts 1, 2 and 3 of equation ( 31) 
are written out separately. The first parts (1) and (2) of  ( 31) are given by ( 32) and ( 
33): 
 
 
 
 
 
 
 
 

 
 
 
( 32) 
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( 33) 

The third part (3): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
( 34) 
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( 35) 

Because the back-scaled situation is on the yield surface, another 2 equations apply: 
 
 
 
 
 
 
 

 
 
 
( 36) 

These equations can be written in general stress components 
 
 
 
 
 
 
 
 
 

 
 
 
( 37) 
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Adding and substracting equations ( 37) results in: 
 
 
 
 
 
 
 
 

 
( 38) 
 
 
( 39) 

When equations ( 35) are substituted into ( 38): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Or simplified, taking into account that ∂cos2θ/∂σxx = -∂cos2θ/∂σyy 
 
 
 
 
 
 
 
 
This gives an expression for Δλ: 
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When this expression is compared to expression ( 26), it can be concluded that 
taking into account the extra planar angle term does not influence the expression for 
Δλ. 
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Or simplified, taking into account that ∂cos2θ/∂σxx = -∂cos2θ/∂σyy gives: 
 
 
 
 
 
 
 
 
 
 
 
 
By substituting the expression for (a) into ( 44): 
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By substituting the expression for Δλ into the right-hand side of ( 45): 
 
 
 
 
 
 
 
 
 
 
 
 
 
The expression for Δλ can also be substituted into the left part of equation ( 45) or 
( 46). When also the expressions ( 8) for ∂cos2θ/∂σxx, ∂cos2θ/∂σyy,  ∂cos2θ/∂σyy 

and ( 6) for ∂φ/∂cos2θ are substituted into ( 46), an equation for µ is obtained in 
which µ is the only unknown parameter. However, given the extensive 
expressions ( 6) and ( 8), the expression becomes to complicated to solve. 
Therefore  the derivation of the Euler backward method with changing planar 
angle stops here. It is important to notice that the difference between ( 46) and the 
equation for µ of the Euler backward method with a constant planar angle ( 29) 
can be described as a deviation from the trial stress components: 
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( 45) 
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( 47) 

Note that ( 46) are just the terms for the adaptation of the trial stress of section 3.4. 
 
In finite element applications use is made of ( 47). First an estimate is made of the 
stress projection using the Euler backward method with a constant angle. 
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Subsequently the terms of ( 47) are determined with this first estimate. The trial 
stress is adapted from these terms, which leads to an adaptation of µ and Δλ.  Then 
the projected stress is also adapted by using ( 30) instead of ( 13). Consequently the 
trial stress is adapted again on the basis of the new projected stress, which leads 
again  to a  new µ and Δλ and so on. The procedure is repeated until convergence is 
reached. Scheme 3-1 illustrates the procedure.  
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Appendix C Derivative of the yield function with 
respect to the planar angle 
 
In this appendix the derivative of the yield function with respect to the planar angle is 
elaborated. Because the yield function is defined as a direct function of the cosine of 
twice the planar angle, the derivative with respect to this term is found. It can be 
written as the derivative of the equivalent stress to the planar angle as follows: 
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The starting point is equation 3.14: 
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The principal stresses are not dependent on the planar angle: 
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From ( 4) two expressions for the derivative of the equivalent stress to cos(2θ) are 
obtained: 
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( 6) 
 

 
In ( 6) the derivatives with respect to the term cos(2θ) are written as: 

 
 

( 7) 
 
 
 

 
By substituting ( 7) in ( 6) the derivative of µ with respect to cos(2θ) can be written: 
 

 
 

( 8) 
 
 

 
Now ( 8) is substituted in ( 7). By substituting ( 7) in ( 5) and making use of ( 1) and  
( 2), an expression for the derivative of the yield function with respect to cos(2θ) is 
obtained: 
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Appendix D Isotropic hardening parameter (f)  
 
When isotropic hardening is assumed, the tensor (β) in (2.16) can be replaced by the 
yield stress (σy): 

 
( 1) 

 
 

Commonly the yield stress (σy) is related to the equivalent plastic strain (εp), so ( 1) 
can be written as: 

( 2) 
 
 

The second term is proportional to the plastic multiplier rate: 
 

( 3) 
 

and consequently: 
 

( 4) 
 

The plastic strain rate is connected to the plastic multiplier rate by the normality 
principle of Drucker: 

( 5) 
 

The equivalent plastic strain rate is related to the plastic strain rate by: 
 

( 6)  
 
By the substitution of ( 5) into ( 6), the equivalent plastic strain rate is expressed as a 
function of the plastic multiplier rate: 

 
( 7) 

 
Subsequently  ( 7) is substituted into ( 3) to derive an expression for (f) in the 
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( 8) 

 
and consequently: 
 

( 9) 
 

 
The first term of ( 9) is obtained by equation (3.10): 
 

( 10) 
 

 
The last part of ( 9) is elaborated for the Vegter yield function to: 
 

 
 
 
 

( 11) 
 
 
 
 
 
 
 
 

 
By substitution of ( 10) and ( 11) into ( 9), the hardening parameter (f) is defined  by: 

 
( 12) 
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Appendix E Yield surface based on constant slope 
reference points 
 
In order to simplify the calculation of the derivative of the yield function, a Bezier 
function based upon reference points with constant gradients is investigated. In the 
current Vegter function the positions and the gradients of the reference points vary 
with the planar angle. To determine the hinge points, first the positions of the 
reference points are interpolated and subsequently the gradients. Then the positions 
of the hinge points are defined by the intersection of the gradients in the reference 
points, see also section 3.2. The derivative of the yield function with respect to the 
planar angle depends on the derivative of the components of the Bezier curve (f1 and 
f2) with respect to the planar angle, see also appendix C: 

 
( 1) 

 
With the current definition of the hinge points this expression becomes very 
extensive. When the reference points are chosen with constant gradients, only the 
positions of the reference points vary with the planar angle. Then the hinge points 
can be determined more easily by interpolated positions without the interpolation of 
the gradients. This could provide a more easy derivation. 
 
So the gain of this procedure is a simplified calculation of the individual components 
of the derivative of the yield function with respect to the stress. Because both the 
interpolation of the reference points and that of the hinge points comes down to the 
interpolation of positions, the partial derivatives of the components of the Bezier 
curve can be written in a matrix form: 
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To formulate reference points with constant gradients, the current reference points 
have to be shifted. For instance the uni-axial reference point will not be situated on 
the first principal axis for each planar angle, see figure E-1. In fact the uni-axial 
reference point no longer represents a real uni-axial stress state. So the relation with 
the uni-axial experiment is less straightforward. This is also the case with the other 
reference points.  
 
At this moment no real judgement of the viability of the alternative reference points 
can be given. The adaptation provides a faster calculation of the partial derivatives 
and more orderly expressions in a finite element code. The disadvantage of the 
method is that the positions of the reference points have to be shifted and therefore 
have a less straightforward relation with measured data. Because the method is not 
appropriate to directly solve all complications  in the Euler backward method (section 
3.4), it has not been elaborated further yet. 
 
 

Figure E-1 Shift of the uni-axial reference point in order to obtain a constant 
strain vector for different planar angles 
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Appendix F Design of clamping equipment 
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Appendix G Design of bearing blocks 
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Appendix H Accuracy of test equipment 
measurements 
 
In order to obtain the accuracy of the results of the shear and plane strain factor, the 
dispersion in the individual measured data is investigated. Then the combination of 
the individual dispersions provides the dispersion of the two factors. This gives an 
idea of the accuracy of the measurements. In many cases no exact values can be 
given of certain data. For instance in one test the initial distance between dots could 
be 50 pixels, whereas the other test  could begin with a pixel distance of 60. This 
initial pixel distance does not influence the interpretation of the data, but has an 
influence on the accuracy. Therefore in the determination of the accuracy worst 
cases are taken. In the case of the initial pixel distance 50 pixels are taken. A precise 
statistical procedure which provides the standard deviation of the data has not been 
carried out.  
 
Data measured during the test are: 
 
• Measured force in horizontal direction on the upper clamp 

The accuracy of the horizontal force is ± 20 N 
• Measured force in vertical direction on the lower clamp 

The accuracy of the vertical force is ± 50 N 
• Measured horizontal displacement on the upper clamp 

The accuracy of the horizontal displacement is not known. The displacement 
is not used in the interpretation of the results, so it is neglected. 

• Measured vertical displacement on the lower clamp 
The accuracy of the horizontal displacement is not known. The displacement 
is not used in the interpretation of the results, so it is also neglected. 

• Measured deformation by the vision system 
The accuracy of determining the centre of a dot is 0.4 pixel 

• Measured thickness of the sheet 
The thickness is measured to an accuracy of 0.005 mm 

 
Plane strain parameter (fps) accuracy 
 
The accuracy of the plane strain factor is determined by first determining the 
dispersion of the strain measurement and subsequently the dispersion of the stress 
determination. On the basis of this analysis the worst and best cases for the plane 
strain factor is determined. 
 
Strain measurement 
  
The strain εps is measured by dividing the vertical distance between the centre of the 
dots by the initial vertical distance. The initial distance is about 60 pixels, worst case 
50 pixels. The dispersion is 0.4 pixel. Therefore the accuracy of the measured strain 
can be determined as follows. 
 
In the initial configuration of the test the nominal strain is 0 %. The maximum possible 
strain calculated by the vision system is equal to: 
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The minimum strain is equal to: 

 
When a plane strain test is finished, the distance between the dots has changed to at 
least 70 pixels. Then the nominal strain is 33.6 %. The maximum strain is equal to: 
 

The minimum strain is equal to: 
 

 
 So in general the strain in the test can be calculated to an absolute accuracy of 
1.6%. Because the time is assumed to be absolute, the strain rate accuracy is related 
directly to the accuracy of the strain. 
 
Stress measurement 
 
The stress is determined by the force on the clamps, the initial thickness of the sheet 
and the thickness strain, corrected with a correction factor determined by a finite 
element simulation: 

 
where 
 
σps is the plane strain stress 
Fy is the force on the clamp in vertical direction  
dini is the initial thickness of the sheet 
εps is the strain in tensile direction 
Corr(εps) is a correction factor determined by the finite element calculation 
 
Note that the dispersion of the stress also depends on the dispersion of the strain 
measurement. The correction factor will be left out in the rest of the determination of 
the accuracy. The plane strain factor is fitted for strains ranging from 8 to 18 %. 
Therefore the accuracy of the stress at a strain of 8 % and at a strain of 18 % is 
determined: 
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The maximum stress in this case is equal to: 

 
 
The minimum stress is equal to: 
 

 
 
 
εps= 18 %: 
 
The nominal stress in this case is: 

 
The maximum stress in this case is equal to: 
 

 
The minimum stress is equal to: 
 

 
 
So the stress is calculated to an accuracy of 2.6 %. 
 
Results summarized 
 
The strain measurement is accurate to an absolute strain of 0.016. 
The strain rate is accurate to an absolute value of 0.016/ttest. 
The stress measurement is accurate to a relative value of 2.6 %. 
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Now the influence on the plane strain factor fps can be investigated by varying the 
data with their inaccuracy. The first option is to vary the strain data with +0.016 and –
0.016 and the stress data with  +2.6 % and –2.6 %. Subsequently the influence on 
the resulting plane strain parameter can be obtained by the least squares method. 
However, the accuracy of the stress is dependent on the accuracy of the strain 
measurement. Therefore the stress cannot be varied independently from the strain. 
The second option is to vary all independent data with their inaccuracy. For instance 
the thickness can be taken 0.005 mm greater than the measured thickness. 
Subsequently  the difference in the factors fps due to the variation in thickness can 
be obtained by the least squares method. In a similar way the difference in the plane 
strain factor by a variation in the strain data can be investigated. Also the difference 
by the variation of the thickness, measured force and the strain data can be obtained 
in the same way.  
 
It appears that the largest plane strain factor is obtained by: 
 
•a variation of the measured force by +50 N 
•a variation of the measured thickness by –0.005 mm 
•a variation of the strain by - 0.016 
 
The smallest plane strain factor is obtained by: 
 
•a variation of the measured force by -50 N 
•a variation of the measured thickness by +0.005 mm 
•a variation of the strain by + 0.016 
 
Based upon these results, the variation in the factor fps is equal to + 0.03 or –0.03. 
Hence the absolute accuracy of the plane strain factor is ±0.03 
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Shear parameter (fsh) accuracy 
 
The accuracy of the shear factor is determined by first determining the accuracy of 
the strain measurement and subsequently the accuracy of the stress determination. 
On the basis of this analysis the worst and best cases for the shear factor are 
determined. 
 
Strain measurement 
  
The shear strain γsh is measured by dividing the relative horizontal displacement of  
the centre of dots by the vertical distance. The vertical distance is about 60 pixels, 
worst case 50 pixels. The dispersion is 0.4 pixel. Therefore the accuracy of the 
measured shear strain can be determined as follows. 
 
In the initial configuration of the test the nominal strain is 0 %. The maximum possible 
strain calculated by the vision system is equal to: 

 
The minimum strain is equal to: 
 

 
At the end of a shear test has been finished, the relative horizontal distance has 
changed to at least 20 pixels. Then the nominal strain is 40 %. The maximum strain 
is equal to: 
 

The minimum strain is equal to: 
 

  
So in general the strain in the test can be calculated to an absolute accuracy of 1.1%. 
Because the time is assumed to be absolute the strain rate accuracy is related 
directly to the accuracy of the strain. 
 
Stress measurement 
 
The stress is determined by the force on the clamps, the initial thickness of the sheet, 
corrected with a correction factor determined by a finite element simulation: 
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where 
σsh is the shear stress 
Fx is the force on the clamp in horizontal direction  
dini is the initial thickness of the sheet 
Corr(γsh) is a correction factor determined by the finite element calculation 
 
Note that, in contrast to the plane strain stress, the accuracy of the shear stress is 
not dependent on the accuracy of the strain measurement. The correction factor will 
be left out in the rest of the determination of the accuracy. The shear factor is fitted 
for strains ranging from 8 to 18 %. Therefore the accuracy of the stress at the strain 
of 8% and at the strain of 18 % is determined: 
 
γsh= 8 %: 
 
The nominal stress in this case is: 

 
The maximum stress in this case is equal to: 

 
The minimum stress is equal to: 
 

 
 
 
γsh= 18 %: 
 
The nominal stress in this case is: 

 
The maximum stress in this case is equal to: 
 

 
The minimum stress is equal to: 
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So the stress is calculated to an accuracy of 1 %. 
 
Results summarized 
 
The strain measurement is accurate to an absolute strain of 0.011. 
The strain rate is accurate to an absolute value of 0.011/ttest. 
The stress measurement is accurate to a relative value of 1 %. 
 
 
Now the influence on the shear factor fsh can be investigated by varying the data with 
their inaccuracy. This influence can be obtained in the same way as for the plane 
strain parameter fps.  
 
It appears that the largest shear factor is obtained by: 
 
•a variation of the measured force by +20 N 
•a variation of the measured thickness by –0.005 mm 
•a variation of the strain by - 0.011 
 
The smallest plane strain factor is obtained by: 
 
•a variation of the measured force by -20 N 
•a variation of the measured thickness by +0.005 mm 
•a variation of the strain by + 0.011 
 
Based upon these results, the variation in the factor fsh is equal to + 0.015 or –0.015. 
So the absolute accuracy of the shear factor is ±0.015. 
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Appendix I Extension of the Vegter yield function 
with (τxz) and (τyz) 
 
 
Mindlin sheet elements also take into account a shear deformation (γxz and γyz) normal 
to the sheet. An option is to incorporate the shear stresses (τxz and τyz) similar to the 
von Mises yield function. The Von Mises function without these shear stresses is 
given by: 

 
( 1)  

Formula  ( 1) shows the von Mises function with implemented shear stresses normal 
to the sheet: 
 

( 2) 
 
Following the same procedure in the Vegter yield function, this function changes from  
 

 
 

( 3) 
 
 
 

 
to 
 

 
 
 

( 4) 
 
 
 
 

Equation ( 4) defines the Vegter yield function with the shear stresses in normal 
direction. 
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List of Symbols 
 
Letters 
 
f   hardening factor 
v   poisson’s ratio 
x,y,z   carthesian coordinates 
 
Capitals 
 
E   elastic modulus 
F,G,H   anisotropy factors for the Hill yield-criterion 
R   R-value 
R0, R45, R90 R-values in 0°, 45° and 90° 
 
Greek symbols 
 
δ   infinite small increment 
Δ increment 
ε normal strain component 
γ shear strain component 
σ normal stress component 
τ shear stress component 
θ planar angle 
λ   plastic multiplier 
 
Tensors/vectors 
 
σ   stress tensor 
ε   strain tensor 
εp   plastic strain tensor 
εel   elastic strain tensor 
α   back stress tensor 
β   hardening tensor 
!&    stress rate tensor 
!&    strain rate tensor 
p

!&    plastic strain rate tensor 
el

!&    elastic strain rate tensor 
!&    back stress rate tensor 
!&    hardening rate tensor 
E    elasticity tensor 
Y    plasticity tensor 
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Subscripts 
 
i,j   vector/tensor component 
t   trial situation 
n   back scaled situation 
x,y,z   vector/tensor component in x,y,z direction 
 
 
Hardening function symbols 
 
β   hardening tensor 
f   hardening factor 
σy     yield stress, equal to the average uni-axial yield stress 
σeq    equivalent yield stress 
σy0   initial yield stress 
σ0   static yield stress 
σ*   dynamic yield stress 
εp   equivalent plastic strain 
ε0   initial equivalent plastic strain 
Δσm   stress increase constant for strain hardening 
β strain hardening constant 
Ω strain hardening constant 
n’   strain hardening exponent 
k   Boltzman number, 8.617⋅10-5 eV 
T   temperature 
p

!&    equivalent plastic strain rate 
&!0    limit strain rate 
σ*0   limit dynamic flow stress 
m’   dynamic stress exponent 
ΔG0   maximum activation enthalpy 
Δεp   equivalent plastic strain increment  
Δt    time increment  
σwh    work hardening part of yield stress 
σdyn   dynamic part of yield stress 
fini    initial hardening rate in a load reversal 
fiso     hardening rate at isotropic yielding 
αeq    equivalent back stress  
αlim    maximum equivalent back stress 
q   anisotropic hardening parameter 
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Yield function symbols 
 
φ   yield function 
σ1   first principal stress 
σ2   second principal stress 
θ   planar angle 
σSH   shear yield stress 
σUN   uni-axial yield stress 
σPS   plane strain yield stress 
σBI   equi-bi-axial yield stress 
αps   factor for second component of the plane strain point 
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  vectors dependent on measured positions of reference points 

gfaci,j   factors dependent on measured gradients of reference points 
µ   situation on Bezier-curve between two reference points 
σy     yield stress, equal to the average uni-axial yield stress 
σeq    equivalent yield stress 
αps   factor for the second component of the plane-strain point 
f1(µ,θ) and f2(µ,θ)  normalized components of the situation on the Bezier curve 
Δε1* and Δε2*  normal strain increment components in the directions of the first 

and second principal stress respectively. 

!

"

#
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α   back stress tensor 
αeq    equivalent back stress  
αlim    maximum equivalent back stress 
θα   planar angle of the back stress 
α1   first principal back stress 
α2   second principal back stress 
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Symbols in experiments 
 
Δuclamp   clamp displacement 
hD           height of the deformation zone 
FX    horizontal clamp force 
L    length of the test piece 
FY   vertical clamp force 
a    initial sheet thickness 
ac    current sheet thickness 
M   bending moment  
b    width of sheet  
t    thickness of sheet 
ρ   curvature radius 
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Samenvatting 
 
Een geavanceerd materiaal model is ontwikkeld dat toepasbaar is in eindige 
elementen simulaties van het dieptrek proces. Tijdens dieptrekken wordt de 
initiele vlakke plaat plastisch vervormd tot een gewenste vorm. Om een 
product zonder gebreken te verkrijgen moeten de materiaal en proces 
parameters zorgvuldig gekozen worden. Met eindige elemente simulaties 
kunnen de invloed van materiaal en de proces parameters worden onderzocht 
voordat het werkelijke dieptrekken wordt uitgevoerd. Op deze manier kan een 
langdurig trial en error proces worden voorkomen. 
 
De vloeifunctie is het eerste aandachtspunt. De vloeifunctie bepaalt of een 
spanningstoestand in het plaatmateriaal elastisch of plastisch is en hangt 
samen met het vloeioppervlak. Gewoonlijk worden de materiaal parameters 
voor de vloeifunctie bepaalt aan de hand van een-assige experimenten. Het 
blijkt dat resulaten van eindige elementen simulaties erg gevoelig zijn voor 
variaties in de vloeifunctie onder multi-axial condities. Vegter (1996) heeft een 
nieuwe vloeifunctie voorgesteld  die gebaseerd is op metingen van de afschuif 
spanning (σSH), de een-assige spanning (σUN), de vlakke vervormings 
spanning (σPS) en de twee-assige spanning (σBI). Deze metingen definieren 
de referentie punten van het vloeioppervlak in de hoofdspannings ruimte.  Het 
vloeioppervlak tussen de referentie punten wordt geconstrueerd met tweede 
orde Bezier interpolatie functies. Elke Bezier functie is relevant voor een 
bepaald gedeelte van de hoofd spanningsruimte. Het Vegter vloeioppervlak 
wordt geillustreerd op de volgende pagina. 
 
Anisotropie wordt in acht genomen door de metingen in verschillende 
richtingen in de plaat uit te voeren. Hiermee worden referentie punten voor 
elke gemeten richting gedefinieerd. Voor tussenliggende richtingen worden de 
referentie punten geinterpoleerd door een Fourier functie. Op deze manier 
kan een vloeioppervlak voor elke willekeurige richting worden verkregen. 
Vervolgens wordt de vloeifunctie als volgt bepaald: 
 
• De spaningstoestand wordt omgezet in een hoofdspanningstoestand 
• De richting van de hoofd spanningen in de plaat worden bepaald 
• De referentie punten behorend tot de bepaalde richting worden gedefinieerd 
• De relevante Bezier interpolatie functie wordt gedefinieerd 
• De vloei functie wordt afgeleid van de hoofd spanningen en de relevante 
  Bezier  functie 
 
De eindige elementen implementatie van de Vegter vloeifuntie is 
gecontroleerd en blijkt correct te zijn. 
 
 



 
Vegter vloei oppervlak 

 
De vloeifunctie wordt uitgebreid met 2 verstevigings modellen. Het eerste 
model is het fysische model van v. Liempt (v. Liempt, 1988) en Vegter 
(Vegter, 1991). Dit verstevigingsmodel kan de vloeispanning voor een grote 
deformatie range nauwkeurig voorspellen en houdt rekening met de invloed 
van de deformatie snelheid. Het model gaat uit van isotroop 
verstevigingsgedrag, wat inhoudt dat elke (meer-assige) vloeispanning met de 
zelfde factor toeneemt na plastische deformatie.  Uit experimenten blijkt dat 
dit gedrag alleen geldig is bij proportionele rekpaden. Daarom is een tweede 
verstevigingsmodel ontwikkeld, dat het materiaal gedrag bij een cyclisch 
rekpad kan beschrijven. Dit model is gebaseerd op het model van Vreede 
(Vreede, 1992). Omdat de vloeifunctie is gedefinieerd in hoofdspanningen, 
wordt het model aangepast om het te combineren met de Vegter vloeifunctie. 
Een begin is gemaakt met de extensie van het verstevigings model naar 
algemene niet-proportionele rekpaden, maar deze extensie geeft nog geen 
realistische resultaten en vergt meer onderzoek. 
 
Om de data voor de nieuwe materiaalbeschrijving te meten is een twee-
assige tester ontwikkeld. De tester is in staat een afschuif deformatie en een 
vlakke vervormings deformatie te testen. De afschuif deformatie kan in 2 
richtingen worden opgelegd en de vlakke vervormings deformatie kan in trek 
en druk worden opgelegd. Op deze manier kan het materiaal gedrag onder 
een grote verscheidenheid aan deformaties en spanningen worden 
onderzocht. In dit proefschrift wordt de tester gebruikt voor de volgende 
doelen: 
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• De bepaling van het afschuif en vlakke vervormings referentie punt 
• De parameter bepaling van het anisotrope verstevigings model 
 
Tijdens de experimenten wordt een plaatstalen proefstuk tussen 2 
klemblokken gemonteerd. Tussen de klemblokken en aan de vrije randen van 
het proefstuk wijkt de deformatie en de spanning af van de opgelegde en 
gemeten waarden. De spanning kan hiervoor kwantitatief gecorrigeerd 
worden met behulp van een eindige elementen model van een gedeelte van 
het proefstuk. De deformatie kan niet kwantitatief voorspeld worden met het 
model, daarom is een deformatie analyse systeem aangeschaft dat de 
deformatie direct op het proefstuk meet. 
 
Het materiaal model wordt gevalideerd aan 3 test cases. De eerste case is 
een buig experiment, uitgevoerd in samenwerking met de Technische 
Universiteit in Eindhoven. Deze case valideert de Vegter vloeifunctie bij de 
vlakke vervormings toestand. De tweede case betreft het dieptrekken van een 
cylindrisch produkt, uitgevoerd in samenwerking met Corus RD&T. Deze case 
valideert de Vegter functie aan de hand van het oor profiel, waarvan bekend is 
dat het gevoelig is voor meer-assige spannings toestanden. De derde case is 
het dieptrekken van een trapezium vormig produkt. Het materiaal model wordt 
gevalideert aan een kritisch product, hetgene inhoudt dat het produkt net kan 
worden diep getrokken zonder dat het materiaal breekt. Het blijkt dat in elke 
test case de Vegter vloeifunctie betere resultaten geeft dan de veel gebruikte 
Hill vloeifunctie, dus de nieuwe materiaal beschrijving kan als erg zinvol 
worden beschouwd. 
 
Ten slotte worden 2 applicaties van complexe dieptrek produkten onderzocht. 
De eerste applicatie betreft het diep trekken van een Volvo pedaal bak. Corus 
RD&T beschikt over enige ervaring met het dieptrekken van dit produkt en 
simulaties van dit produkt kunnen kunnen worden vergeleken met 
experimenten. Het blijkt echter dat de proces condities niet erg nauwkeurig 
kunnen worden vastgesteld vanwege slijtage aan de gereedschappen, wat als 
consequentie heeft dat de experimentele resultaten met voorzichtigheid 
moeten worden geinterpreteerd. De tweede applicatie is het dieptrekken van 
een Audi spatbord, gebruikt als Benchmark op de Numisheet ’99 conferentie. 
De vereiste rekentijd voor deze applicatie blijkt positief waardoor 
geconcludeerd kan worden dat het ontwikkelde materiaal model geschikt kan 
worden gebruikt in realistische dieptrek applicaties. 




